Development of prototype UrbanSim models

Zachary Patterson Michel Bierlaire Ricardo Hurtubia

8th Swiss Transport Research Conference 15 -17 October 2008 Monte Verità

Introduction

- Importance of integrated modeling
- UrbanSim (Wadell, 2002): appealing platform
- Most implementations done by UrbanSim's developers
- Effort required to develop an operational model? (very high, probably)
- Prototype models help to evaluate the application of a fully implemented UrbanSim model

Outline

- 1. Literature review
- 2. Brief UrbanSim description
- 3. Brussels case study
- 4. Lausanne case study
- 5. Developing a Prototype UrbanSim model
 - Familiarization
 - Data preparation
 - Sub-model estimation
 - Simulation and analysis
 - Evaluation
- 6. Conclusions

Literature review

- Descriptions of UrbanSim
- Computer science (software and user interface)
- Discrete choice innovations related to location choice (UrbanSim as a tool to test hypotheses)
- UrbanSim applications (by developers)
- Independent UrbanSim applications (Nguyen-Luong, 2008)

Little information on how to evaluate UrbanSim as an integrated model

UrbanSim

- Why UrbanSim?
 - Open source
 - Very disaggregate
 - Dynamic disequilibrium approach
- Disadvantages:
 - High data requirements (because of disaggregation)
 - Learning costs
 - Complexity of model preparation, estimation and calibration

UrbanSim

Fundamental Data

- Gridcells
- Households
- Jobs
- Buildings
- Development event history
- Development Constraints

"The Six Tables"

Two case studies

Brussels, Belgium

Lausanne, Switzerland

- Data from an already implemented TRANUS model:
 - Households by zone and socio-economic cluster for 1991 and 2001
 - Employment by zone and economic sector (13) for 1991 and 2001
 - Land-value (3 land-uses) by zone for 2001
 - Interzonal travel time and logsums for 2001
 - GIS layer of road infrastructure
 - GIS layer of zoning

• Data preparation

- Standard gridcell of 150 x 150 meters
- Households and jobs were disaggregated into gridcells
- One building of each required type were created in each gridcell
- Number of residential units and non-residential surface was adjusted to account for vacancy rates
- Employment and population change between 1991 and 2001 was used to create a synthetic development event history
- Development constraints were derived from "observed" development in the city

• **Results** (Household Location Choice Model)

	Variable	Coefficient	Std. Error	t-value
1	Cos t: Income	-0.0661	0.0307	-2.2
2	% High Inc. If High Inc.	0.0334	0.00150	22.3
3	% Low Inc. If High Inc.	0.00400	0.00138	2.9
4	% Low Inc. If Low Inc.	0.0603	0.00109	55.4
5	Travel Time to CBD	-0.000622	0.000148	-4.2
6	In Flanders	-0.0267	0.00856	-3.1
•	Null Log-likelihood is:	-440982.247		
	Log-likelihood is:	-439242.311		
	LR Test:	3479.871		
	Number of observations:	129655		
	Convergence statistic is:	7.617E-05		

Results:

Difference between observed and predicted population growth by comune (2000 – 2007)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

• Available data

- Swiss census of households (2000)
- Swiss census of enterprises (2001)
- GIS layers for geographical data
- Transportation model (EMME)
- No info on land prices
- Imperfect data on household income

- Data preparation
 - Households: directly from census
 - Jobs: a record for each job in each enterprise
 - Buildings: from households and jobs tables
 - Development event history: directly from census
 - Development constraints were derived from observed development in the city

• **Results** (Household Location Choice Model)

	Variable	Coefficient	Std. Error	t-value
1	Cost: Income	-5.935	0.747	-7.9
2	Retail Employment WWD	0.0298	0.00328	9.1
3	% High Inc. If High Inc.	0.0298	0.000616	48.4
4	% Low Inc. If Low Inc.	0.0236	0.00113	21.0
5	High Density if Young	0.428	0.0177	24.1
6	Mixed Use if Young	0.454	0.0217	21.0
7	Res. Units with Children	-0.00472	0.000103	-45.6
8	Accessibility to Population	0.400	0.0455	8.8
9	Travel Time to CBD	-0.0211	0.00259	-8.1
10	Travel Time to Station	0.0320	0.00210	15.2
	Log-likelihood is:	-440830.606		
	Null Log-likelihood is:	-444383.444		
	LR Test:	7105.676		
	Number of observations:	130655		
	Convergence statistic is:	5.398E-04		

Swiss Transport Research Conference 2008

• Familiarization

- → With UrbanSim
- → With local data
- Run simulations with provided example (Eugene)
- Explore data of provided example
- Identify required data
- Analyze "fit" between required and available data

Data preparation

- Concentrate on the "six tables"
- Build tables starting from available examples
- Focus on readily available data
- Identify missing data
- If necessary, use simulated data or simplifying assumptions

Submodel estimation

- Quality of models is difficult to evaluate without seeing simulation results
- ⇒ Estimate quickly in order to be able to run simulations soon (models can be improved later)

Transport model integration

- Continual interaction is not strictly necessary
- Clearly identify inputs and outputs of the transport model

• Simulation

- Start to run simulations early, even if data is incomplete (helps to identify possible errors and improvements)
- Use the latest stable release

Analysis

- Population growth by area?
- Simulation results comply with expectations?
- Problems with data?
- Problems with submodels?

Evaluation

- Desired characteristics of the operational model
 - Level of disaggregation (Data requirements)
 - Interaction with transport model
- Effort required to implement a complete model
 - Data gathering
 - Submodel estimation
 - Transport model (Is there an appropriate, available model?)
- Priority identification
 - Disaggregate projections → UrbanSim
 - Aggregate projections \rightarrow Other models may be better (easier)

Conclusions

- Best way to evaluate UrbanSim is developing a prototype model
- Even with incomplete data results can be reasonable
- Developing a prototype model is possible within 3-5 months of one person's effort

Conclusions

- Recommendations:
 - Learn by doing
 - Start with provided examples and available data
 - Concentrate on the "six tables"
 - Continual interaction with transport model is not strictly necessary
 - Run simulations early, even if data is incomplete
 - Concentrate on general results
 - Identify desired characteristics and data requirements for an operational model

Questions?

Swiss Transport Research Conference 2008