Markov assignment for a pedestrian activity-based network design problem

Yuki Oyama*,

Eiji Hato, Riccardo Scarinci and Michel Bierlaire

*Department of Urban Engineering School of Engineering, The University of Tokyo <u>oyama@bin.t.u-tokyo.ac.jp</u> / <u>yuki.oyama@epfh.ch</u>

September 12, 2017

Oyama, Y. et al. (UT&EPFL)

hEART 2017 in Israel

September 12, 2017

Outline

1. Introduction

2. Pedestrian activity assignment

- A) Methodology
- B) Illustrative examples

3. Application to a network design

4. Conclusion

Outline

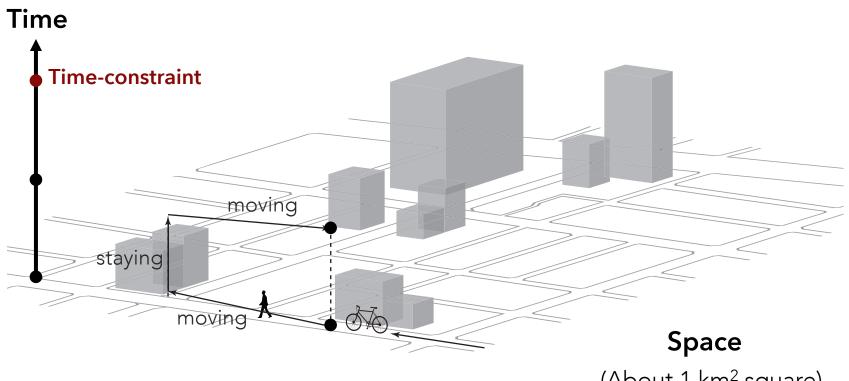
1. Introduction

2. Pedestrian activity assignment

- A) Methodology
- B) Illustrative examples
- 3. Application to a network design
- 4. Conclusion

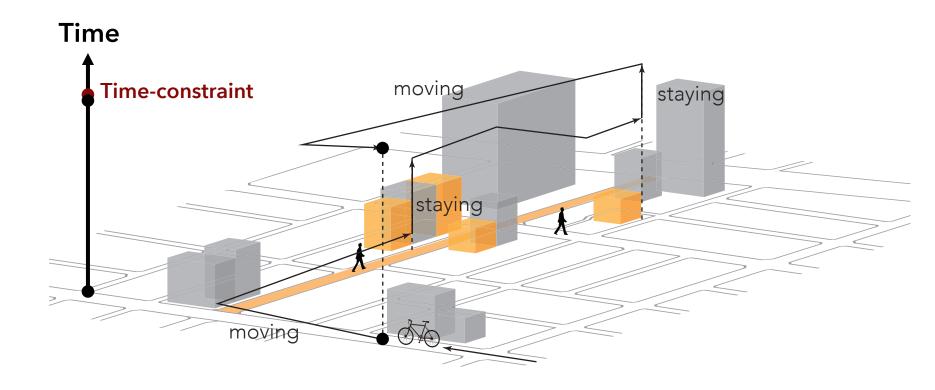
Motivation

Describing the sequence of travels and activities in city centers



Motivation

Describing the sequence of travels and activities in city centers



Introduction

Focus of study

Activity-based network design

[Kang et al., 2013]

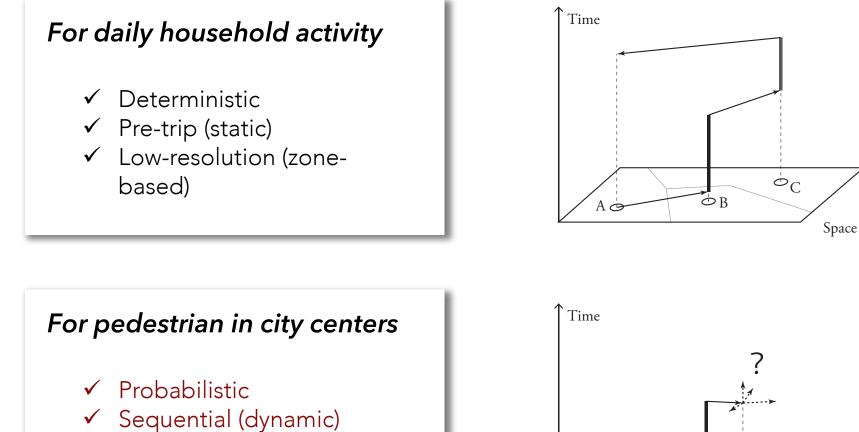
OD demand is not known a priori, but is the subject of responses in user itinerary choices to infrastructure improvements.

Upper level network design problem

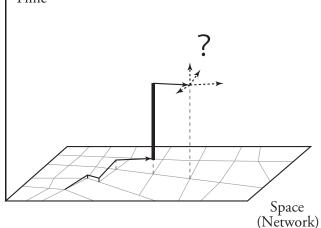
Lower level activity path choice problem

Introduction

Activity path choice problem



 High-resolution (networkbased)



Contributions

1. Modeling pedestrian activity

- Combinatorial choice of route, location and duration
- Dynamic decision making in time-space network

2. Algorithms for complicated computation

- Applying Markovian (recursive) route choice model
- Network restriction based on the time-space prism

3. Application

- A pedestrian activity-based network design problem
- Bi-level and multi-objective programming

Outline

1. Introduction

2. Pedestrian activity assignment

A) Methodology

B) Illustrative examples

3. Application to a network design

4. Conclusion

Framework | network description

Spatial network: includes staying node/link where activities are performed

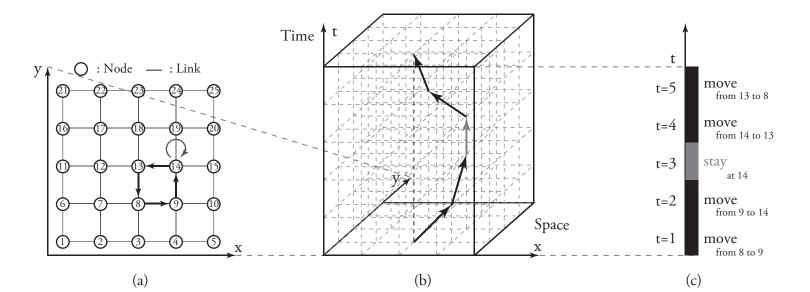
$$\mathcal{G} = (\mathcal{N}, \mathcal{A}), \ \mathcal{N} = \mathcal{N}^m \cup \mathcal{N}^s, \ \mathcal{A} = \mathcal{A}^m \cup \mathcal{A}^s$$

Discretized time: with a constant interval au

 $t \in \{0, 1, 2, \dots, T\}$

Activity path: the sequence of states

$$\psi = [s_0, s_1, \dots, s_T], \ s_t = (t, i), i \in \mathcal{N}$$



Oyama, Y. et al. (UT&EPFL)

Framework | assumptions

- 1. Travelers are **homogeneous, move by only walk.** Walking speed is constant.
- 2. Based on **Markov decision process**, traveler's state always changes into a connected state at each discretized time *t*.
- 3. Traveler's decision is **restricted by time-constraint** *T*. As the result of sequential state transition from 0 to *T*, an activity path is obtained.
- 4. Initial state (source, $s_0 = (0, o)$) and final state (sink, $s_T = (T, d)$) are always given.

Network restriction

Time-space constraint

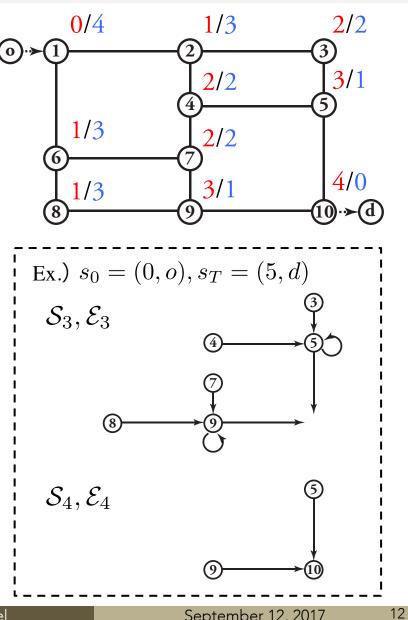
$$s_0 = (0, o), s_T = (T, d)$$

STEP1: Topological distance $D^{o}(i), D^{d}(i)$

STEP2: State existence condition $\mathcal{S}_t = \{i \in \mathcal{N} | I_t(i) = 1\}$ $I_t(i) = \begin{cases} 1, & \text{if } D^o(i) \le t, D^d(i) \le T - t \\ 0, & \text{otherwise.} \end{cases}$

STEP3: State connection condition

$$\mathcal{E}_t = \{(i, j) \in \mathcal{A} | \Delta_t(j|i) = 1\}$$
$$\Delta_t(j|i) = I_t(i)\delta(j|i)I_{t+1}(j)$$



Network restriction

Time-space prism

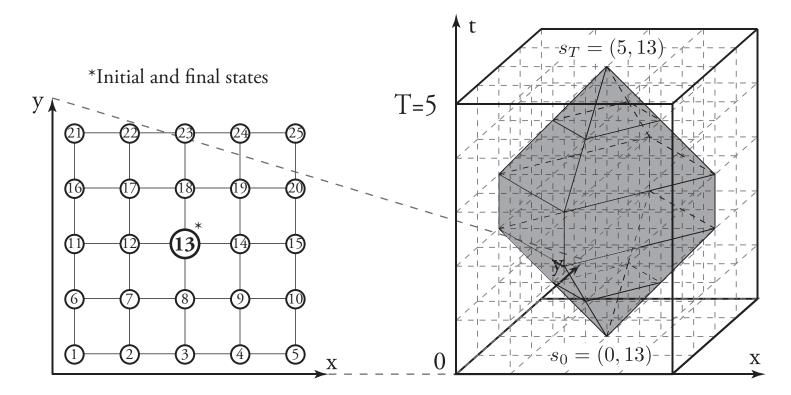


Figure: Illustrations of constrained networks by the time-space prism

Oyama, Y. et al. (UT&EPFL)

hEART 2017 in Israel

Activity path choice model

Based on the Markov decision process

Individual at state $s_t = i$ chooses next state $s_{t+1} = j$ that maximizes the sum of

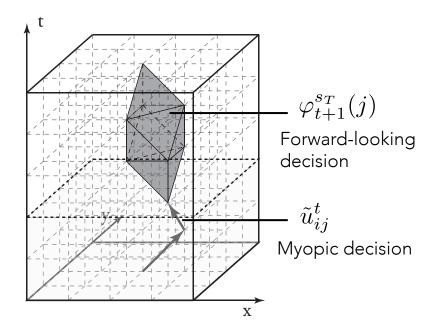
 \tilde{u}_{ii}^t

- State transition utility
- Discounted expected utility $\beta \varphi_{t+1}^{s_T}(j)$

Transition probability

$$p_t(j|i) = \frac{\Delta_t(j|i)e^{\mu\{u_{ij}^t + \beta\varphi_{t+1}(j)\}}}{\sum_{j' \in \mathcal{N}} \Delta_t(j'|i)}e^{\mu\{u_{ij'}^t + \beta\varphi_{t+1}(j')\}}}$$

$$\Delta_t(j|i)$$
 : time-space prism constraint
 eta : time discount factor
 $(0 \le eta \le 1)$



Maximum expected utility of the prism

$$\varphi_t(i) = \mu \ln \sum_{j \in \mathcal{N}} \Delta_t(j|i) e^{\mu \{u_{ij}^t + \beta \varphi_{t+1}(j)\}} \quad \dots (*)$$

Backward induction

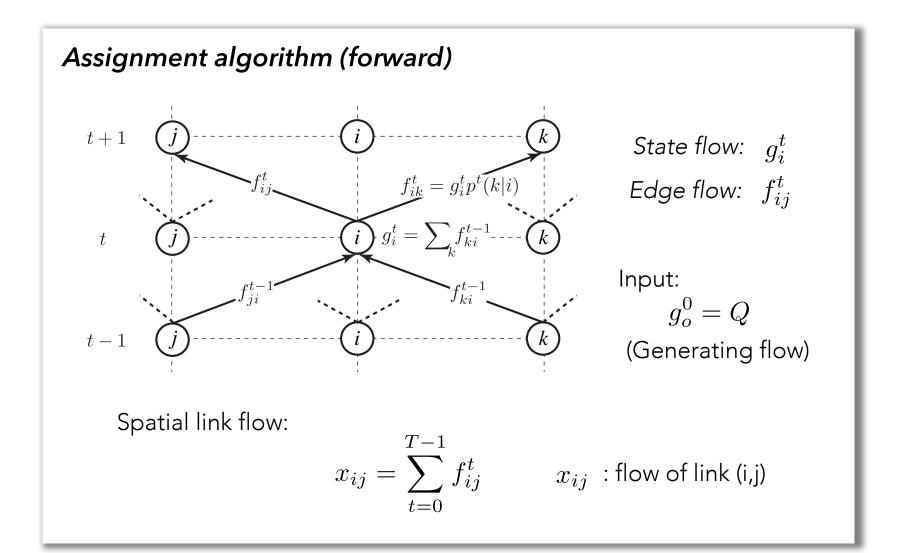
- 1. Initialize t = T , and $\varphi_t(i) = 1, \forall i \in \mathcal{N}$
- 2. Set t = t 1, and calculate $\varphi_t(i)$ with Eq. (*)
- 3. Finish the algorithm if t = 0, otherwise return to Step 2.

*If the Bellman equation is non-linear, the same method can be applied.

Oyama, Y. et al. (UT&EPFL)

hEART 2017 in Israel

Network assignment



Outline

1. Introduction

2. Pedestrian activity assignment

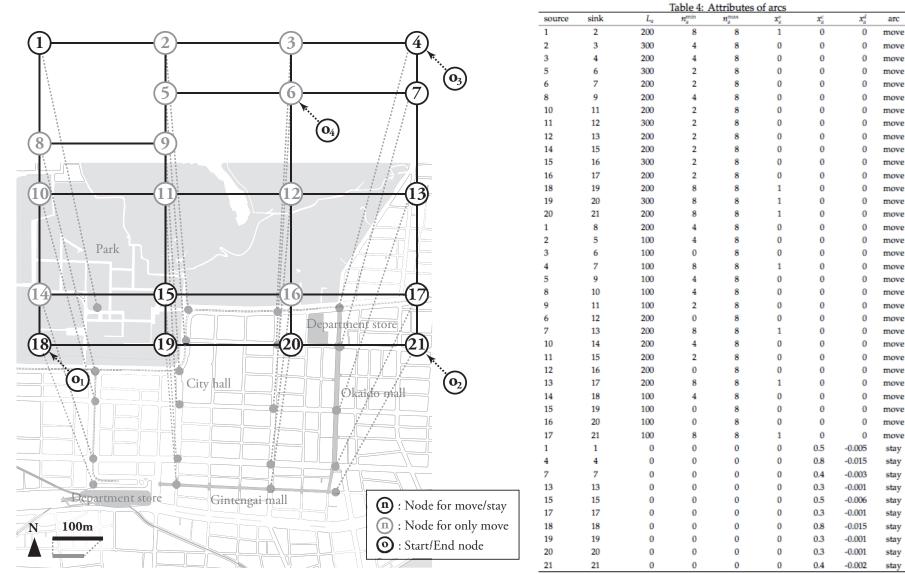
- A) Methodology
- B) Illustrative examples
- 3. Application to a network design
- 4. Conclusion

Model specification

Utility function:

$$\begin{split} \hat{u}_{a}^{t} &= \underbrace{\theta_{tt}tt_{a}}_{\text{travel time}} + \underbrace{\left(\theta_{w}x_{a}^{w} + \theta_{s}x_{a}^{s}\right)\left(\frac{l_{a}}{L}\right)}_{\text{utility of moving sidewalk and shopping street}} + \underbrace{\theta_{u}\int_{t\tau}^{(t+1)\tau}(x_{ij}^{c} + x_{ij}^{d}\omega)d\omega}_{\text{utility of staying}} \\ \theta \quad : \text{a vector of coefficients} \qquad x_{a}^{w} \quad : \text{sidewalk width [m]} \\ tt_{a} \quad : \text{travel time on arcs [min]} \qquad x_{a}^{s} \quad : \text{shopping street dummy variable} \\ \dot{u}_{a}(\omega) &= x_{a}^{c} + x_{a}^{d}\omega \quad : \text{deviated function of staying utility, } x_{a}^{c} > 0, x_{a}^{d} < 0 \\ \quad : \text{diminishing marginal utility} \end{split}$$

Network setting



*All arcs are bidirectional and paired arc have same attributes with each other

Oyama, Y. et al. (UT&EPFL)

Pedestrian activity assignment Numerical example

Result | activity path choices

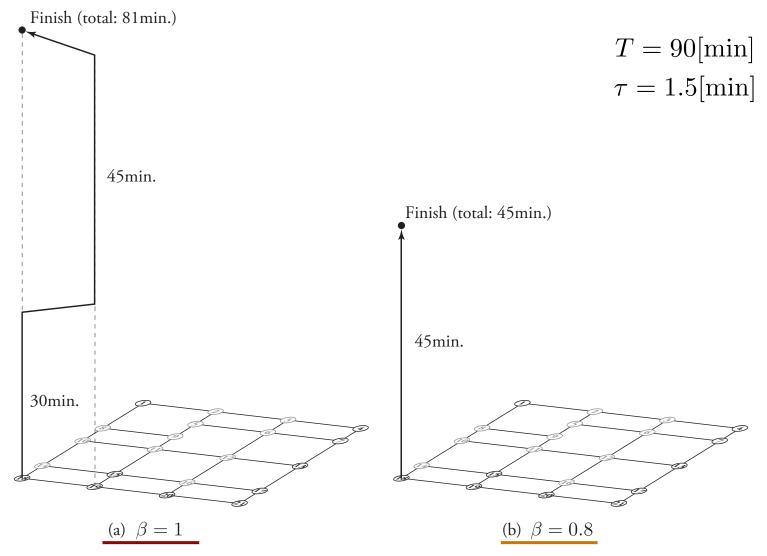


Figure: The most frequent paths departing from node 18 with deferent discount rates

Result | assignment results

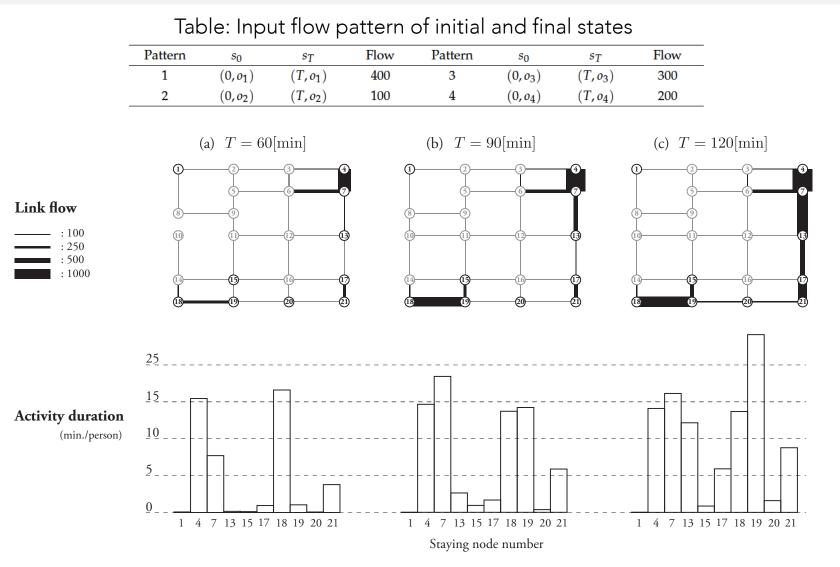


Figure: Activity assignment results with variable values of time constraints.

Oyama, Y. et al. (UT&EPFL)

hEART 2017 in Israel

Outline

- 1. Introduction
- 2. Pedestrian activity assignment
 - A) Methodology
 - B) Illustrative examples

3. Application to a network design

4. Conclusion

Problem definition

Optimizing configuration of the pedestrian network

Decision variable:

 $n_{ij} \in \mathbb{N}_0$: sidewalk width on moving links $\forall (i,j) \in \mathcal{A}^m$ s.t., n_{ij}^{\min} : the minimum (current) width [m] $n_{ij}^{\min} \le n_{ij} \le n_{ij}^{\max}$ n_{ij}^{\max} : the possible maximum width [m] Activity assignment Decision variable: f_{ij}^t : link flow at time $t \quad \forall (i,j) \in \mathcal{A}^m \cup \mathcal{A}^s, \forall t$

Multi-objective functions

1. Maximizing total duration time of district [min.]

$$\max z_1 = \sum_{(i,j)\in\mathcal{A}} \sum_t f_{ij}^t \tau$$

 f_{ij}^t : edge flow

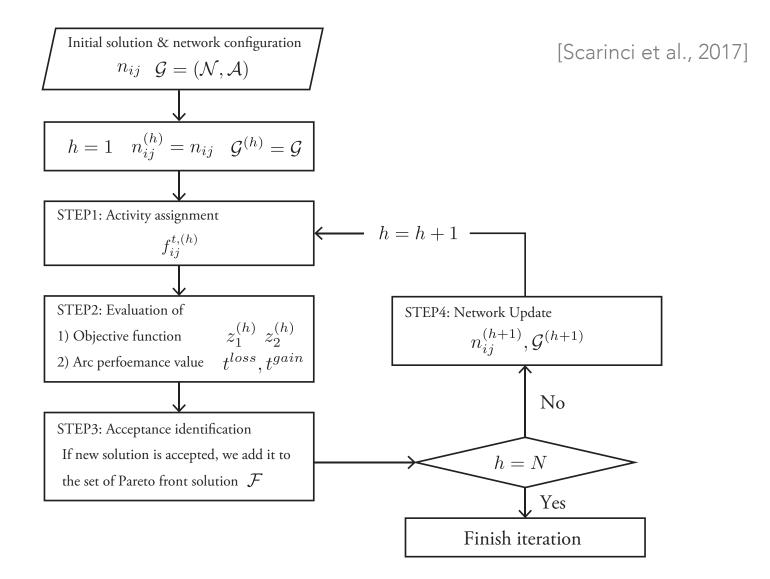
1m

au : time discretization unit

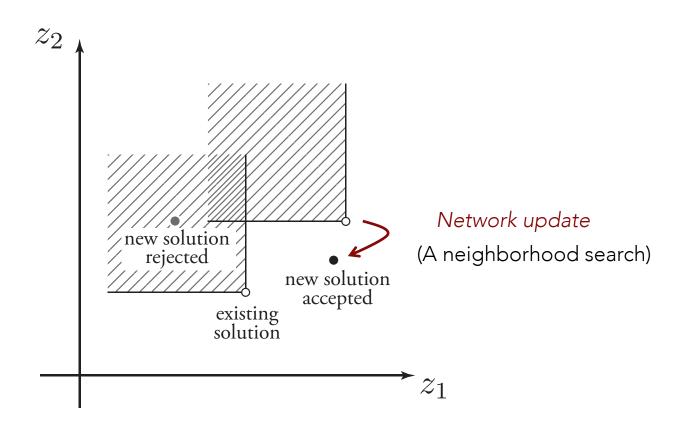
2. Minimizing total increases of sidewalk area [m²]

$$\min z_2 = \sum_{(i,j)\in\mathcal{A}^m} (n_{ij} - n_{ij}^{\min}) l_{ij} \qquad \begin{array}{l} \mathcal{A}^m : \text{moving link set} \\ l_{ij} : \text{link length} \\ n_{ij} - n_{ij}^{\min} : \text{widening width} \end{array}$$

Solution methodology



Acceptance criterion



Oyama, Y. et al. (UT&EPFL)

Result | Pareto front solutions



Figure: Trade-off curve between sojourn time and widened sidewalk area (CPU time: 5599.69 [s])

Oyama, Y. et al. (UT&EPFL)

Result | example solution

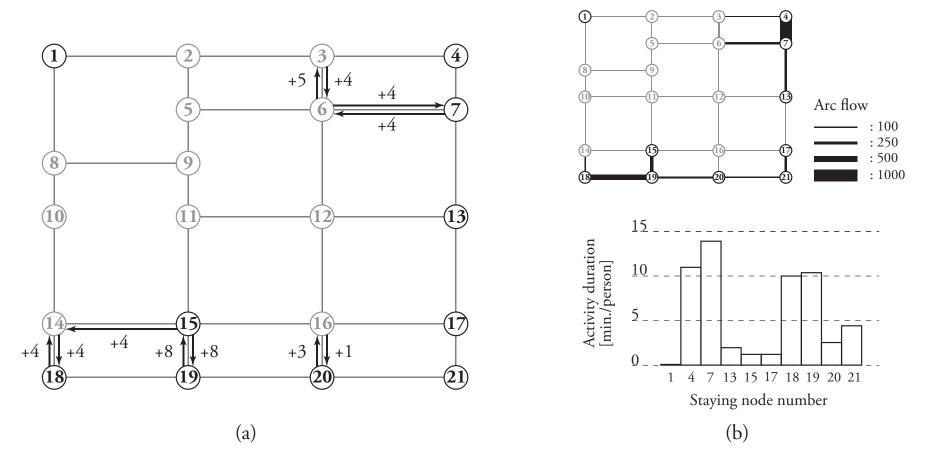


Figure: Variation of (a) a network configuration of an example solution A (b) activity flow in case of the network

Outline

- 1. Introduction
- 2. Pedestrian activity assignment
 - A) Methodology
 - B) Illustrative examples
- 3. Application to a network design
- 4. Conclusion

Conclusions

Conclusion

- Modeling pedestrian behavior
 - A probabilistic and dynamic activity path choice model is proposed based on the Markov decision process.
 - Time-constraint and time discount factor are significant parameters for pedestrian activities in city centers.
- Computable algorithm
 - Markovian assignment is equivalent to the MNL model but does not require path enumeration.
 - Time-space prism-based network restriction removes unreachable states in advance and reduces the size of path set.
- Network design
 - A pedestrian activity-based network design is presented.

Thank you for attention.

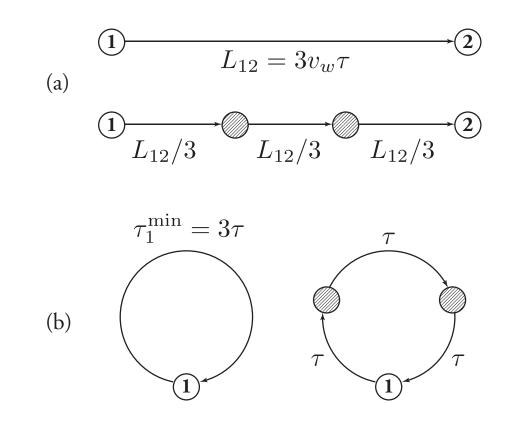
Network restriction

Table: Restricted path set (24 paths)

node number at each time													
path	t = 0	1	2	3	4	5	path	t = 0	1	2	3	4	5
1	13	8	3	3	8	13	13	13	14	9	9	14	13
2	13	8	7	7	8	13	14	13	14	14	13	13	13
3	13	8	8	8	8	13	15	13	14	14	14	13	13
4	13	8	8	8	13	13	16	13	14	14	14	14	13
5	13	8	8	13	13	13	17	13	14	15	15	14	13
6	13	8	9	9	8	13	18	13	14	19	19	14	13
7	13	12	7	7	12	13	19	13	18	17	17	18	13
8	13	12	11	11	12	13	20	13	18	18	13	13	13
9	13	12	12	12	12	13	21	13	18	18	18	13	13
10	13	12	12	12	13	13	22	13	18	18	18	18	13
11	13	12	12	13	13	13	23	13	18	19	19	18	13
12	13	12	17	17	12	13	24	13	18	23	23	18	13

Case study

Network standardization



 L_a : arc length [m] au : interval of time discretization [s] v_w : walking speed [m/s] au_i^{\min} : minimum duration time of staying node [s]

Case study

Network design

Network Update

Remove-Random-Width

Remove a unit width \tilde{n} from an arc randomly selected:

$$n_{ij}^{(h+1)} = n_{ij}^{(h)} - \tilde{n} \quad \text{ s.t., } \quad n_{ij}^{(h)} \ge \tilde{n}$$

Add-Random-Width

Add a unit width \tilde{n} from an arc randomly selected:

$$n_{ij}^{(h+1)} = n_{ij}^{(h)} + \tilde{n}$$
 s.t., $n_{ij}^{(h)} + \tilde{n} \le \kappa_{ij}$

Likewise,

Remove-Worst-Width Add-Best-Width

where the **worst** and **best** are defined with **arc performance value** (in the next slide).

Network design

Arc performance

Utility loss (gain) for identifying the worst (best) moving arc:

$$\phi_{ij}^{\text{loss}} = \{ \hat{v}_{ij} (n_{ij}^{(h)} - \tilde{n}) - \hat{v}_{ij} (n_{ij}^{(h)}) \} \cdot f_{ij} \qquad \forall (i, j) \in \mathcal{A}^m \\ \phi_{ij}^{\text{gain}} = \{ \hat{v}_{ij} (n_{ij}^{(h)} + \tilde{n}) - \hat{v}_{ij} (n_{ij}^{(h)}) \} \cdot f_{ij} \qquad \forall (i, j) \in \mathcal{A}^m \end{cases}$$

Network design

Parameters

- $\tilde{n} = 1$: unit removal/additional width [m]
- $\hat{c} = 1$: unit capital cost [Yen/m2]
- N=2000 : Iteration number

Solution

- Neighborhood structure of Network Update is **selected randomly**.
- Initial solution is **full-equipped** network.

Case study

Pareto front search

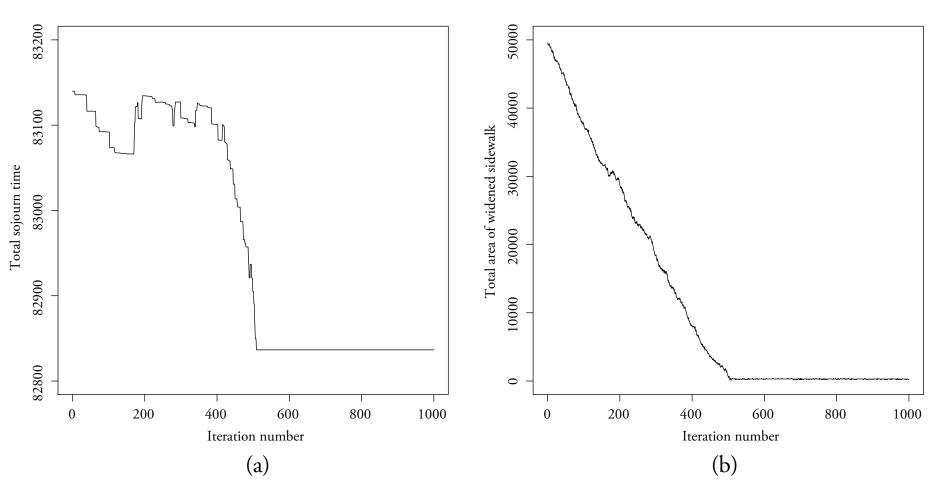


Figure: Variation of (a) total sojourn time and (b) total area of widened sidewalk in iteration process.