Railway Disruption Management with Viriato and Algorithm Platform

Oliver Buschor, Meritxell Pacheco, Stefano Bortolomiol, Michel Bierlaire
Transport and Mobility Laboratory TRANSP-OR
École Polytechnique Fédérale de Lausanne EPFL

Nikola Obrenović
Faculty of Technical Sciences, University of Novi Sad, Serbia

Matthias Hellwig
SMA und Partner AG, Zürich, Switzerland

nextRail19, Zürich, Switzerland
Outline

1. Introduction
2. State of the art
3. Data preparation
4. Algorithm implementation
5. Conclusions and future work
Introduction

- Disrupted train network
 - rearrange timetable
 - reroute trains
 - respect capacity
 - keep cost moderate
 - satisfy passenger comfort
 - flexible route choice
Recovery problem

- Recovery problem in 3 phases (Binder et al. (2017b), Veelenturf et al. (2015), Cacchiani et al. (2014)):

 1. Timetable rescheduling
 2. Rolling stock allocation
 3. Crew assignment
Timetable rescheduling problem

- Overview and Classification (Cacchiani et al., 2014)
 - Perturbation
 - Network
 - Approach

Disturbance

- Microscopic
- Operation centric
- 3 min

Disruption

- Macroscopic
- Passenger centric
- optimising railways
Timetable rescheduling problem

- Corman et al. (2016)
- Kroon et al. (2015)
- Hao et al. (2018)
- Binder et al. (2017a)
- Binder et al. (2017b)
- Zhu and Goverde (2019)
- Veelenturf et al. (2015)
Modelling approaches

Network Graph
- Space-time: Kroon et al. (2015), Binder et al. (2017a,b), Hao et al. (2018)

Passenger Groups
- Dividable: Kroon et al. (2015), Hao et al. (2018)
- Not dividable: Corman et al. (2016), Binder et al. (2017a, b), Zhu and Goverde (2019)
Recovery decisions

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Modify Rolling Stock</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delay</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Order</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Reroute</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Cancel</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Emergency Trains</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Additional stops</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Skip stops / short turns</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Viriato and Algorithm Platform

Algorithm Platform

Abstract Intermediate Data Model

Algorithm Interface

Planning Tool

Timetable Data

Rolling Stock Data

Infrastructure Data

Routing Services

Running-Time Calculation Service

Conflict Detection Service

* Figure by SMA und Partner AG
Datasets

- **Passenger trips - ARE (2010)**
 - CH split into zones
 - Demand of trips between zones
 - Travel time and distance

- **Viriato - SMA und Partner AG**
 - Part of SBB railway network (stations, junctions, tracks, capacity)
 - Train schedule and paths
Data preparation

- Initial demand assignment

 - ARE dataset
 - Passenger demand between zones
 - Network graph consisting of zones and stations
 - Route choice of passengers
 - Adapted Dijkstra
 - Number of passengers on trains
 - Viriato database
 - Network topology, train paths and timetables

EPFL - TRANSP-OR

sma+ optimising railways
Assignment of stations to zones

• Demand of a zone is considered, if the distance to closest station is below a threshold

• Each zone is connected to several stations:
 • n closest stations by Euclidean distance
 • All stations in the k closest zones by travel time
 • Weighted connections with travel time by public transportation
 • n & k thresholds to be set
Adapted Dijkstra’s shortest path algorithm

- Do not put the zones into the queue
- Add $\frac{1}{2}$ of headway of 1st leg train to mimic waiting time at the first station
Resulting path loads

<table>
<thead>
<tr>
<th>O - D</th>
<th>NPVM</th>
<th>Simulated</th>
<th>Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZHDB - ZOER</td>
<td>46'575</td>
<td>58'059</td>
<td>+11'484</td>
</tr>
<tr>
<td>ZOER - ZHDB</td>
<td>47'810</td>
<td>46'221</td>
<td>- 1'589</td>
</tr>
<tr>
<td>ZSEB - ZOER</td>
<td>6'124</td>
<td>815</td>
<td>- 5'309</td>
</tr>
<tr>
<td>ZOER - ZSEB</td>
<td>6'050</td>
<td>940</td>
<td>- 5'119</td>
</tr>
<tr>
<td>ZWIP - ZOER</td>
<td>52'867</td>
<td>15'895</td>
<td>- 36'972</td>
</tr>
<tr>
<td>ZOER - ZWIP</td>
<td>51'689</td>
<td>5'542</td>
<td>- 46'147</td>
</tr>
</tbody>
</table>
Problem definition by Binder et al.

- Multi-objective railway timetable rescheduling problem as an Integer Linear Program:
 - f_p: minimization of passenger inconvenience,
 - f_o: minimization of operational costs, and
 - f_d: minimization of the deviation from the undisrupted timetable.
Network model

- Discretized planning horizon (1 minute period)
- Macroscopic model of railway network
 - Stations - with or without a shunting yard
 - Tracks – considered to be bidirectional
- Original and emergency trains
 - The latter deployed only from the shunting yards
Time-expanded network

Distance traveled

(\(s_0, t_0, k_0\))

(\(s_1, t_1, k_0\))

(\(s_1, t_2, k_0\))

(\(s_2, t_3, k_0\))

(\(s_2, t_4, k_1\))

(\(s_3, t_5, k_1\))_\text{egress}

\(N_d\)

\(N_o\)_\text{access}

In-vehicle

Waiting

Transfer

Travel time
Recovery decisions

• **Cancellation**: A train may be fully or partially canceled

• **Delay**: The arrival or departure may be delayed up to a maximal amount of time

• **Rerouting**: A train may be rerouted through another path than the originally planned one

• **Emergency train**: At every station with a shunting yard, a limited number of emergency trains is available

• **Emergency bus**: If the track between two neighboring stations is disrupted, an emergency bus may be scheduled to connect the two stations directly
Passenger travel choice

- Passenger: \((o_p, d_p, t_p)\)
- Travel options: \(\Omega(o_p, d_p)\)
- Generalized path cost for passenger \(p\) and path \(\omega \in \Omega(o_p, d_p)\):
 \[
 C_{\omega}^p = VT_{\omega}^p + \beta_1 \cdot WT_{\omega}^p + \beta_2 \cdot NT_{\omega}^p + \beta_3 \cdot ED_{\omega}^p + \beta_4 \cdot LD_{\omega}^p
 \]
Solution methodology (Binder et al.)

- In real cases, the problem is too big to be solved exactly
- Heuristic approach: generate a set of “good” disposition timetables, and quantify the trade-off between the objectives
Solution methodology

- Adaptive Large Neighborhood Search (ALNS) meta-heuristic is implemented to construct the disposition timetable
- Neighborhood operators are inspired from real-life recovery strategies
- Each operator is chosen with a certain probability
 - Probabilities are updated during the execution
- The algorithm keeps track of non-dominated solutions using an archive of solutions
Neighborhood operators

- Cancel trains completely
- Cancel trains after a given station
- Delay trains completely
- Delay trains after a given station
- Reroute trains between neighboring stations
- Add an emergency train
- Add an emergency bus
Passenger assignment procedure

- Passenger demand
- Passenger priority list
- Timetable
- Passenger assignment
- Passenger flows
Results

- The three-dimensional Pareto frontier allows to analyze the trade-off between the objectives.
Implementation with Viriato and Algorithm Platform

• Data:
 • Network data
 • Timetables

• Used REST API methods:
 • Data access methods
 • neighbor-nodes – nodes connected with a direct track
 • section-tracks-between – finding a sequence of tracks which link two nodes
 • section-tracks-parallel-to – finding a parallel section for a given input
 • set-section-track – defining the section tracts for a train path
 • reroute-train – set the new path and the used section tracks
 • Scenario definition methods
Conclusions

• From the previous research:
 • Proposed methodology gives satisfactory results and allows analysis of the trade-offs between the different objectives
 • Significant improvements can be achieved in passenger satisfaction with only a minor increase in the operational cost of the timetable
 • The higher the deviation from the undisrupted timetable is allowed, the better the timetable will perform in terms of passenger satisfaction and operational cost
Conclusions

• Viriato provides access to valuable data

• By using the Viriato environment and off-the-shelf methods of Algorithm Platform, algorithm development is faster
 • Expert can focus on the scientific work

• Faster industrial application of theoretical developments

• Viriato could be improved by including demand models
Future work

• H2020 project (or similar program) application:
 • *Intelligent algorithms for real-time railway management*
Thank you!

Questions?
nikola.obrenovic@uns.ac.rs
References

References

