Railway Disruption Management with
Viriato and Algorithm Platform

Oliver Buschor, Meritxell Pacheco, Stefano Bortolomiol, Michel Bierlaire
Transport and Mobility Laboratory TRANSP-OR
Ecole Polytechnique Fédérale de Lausanne EPFL

Nikola Obrenovi¢
Faculty of Technical Sciences, University of Novi Sad, Serbia

Matthias Hellwig
SMA und Partner AG, Zirich, Switzerland

nextRail |9, Zurich, Switzerland

c P l- L -S T RANSP-D R sma : optimising l'ﬂllWﬂ"fE




Outline

|. Introduction

2. State of the art

3. Data preparation

4. Algorithm implementation

5. Conclusions and future work

E P :: L 'g;R ANSP.OR sma" optimising railways



Introduction

* Disrupted train network
* rearrange timetable
* reroute trains
* respect capacity
* keep cost moderate
* satisfy passenger comfort

* flexible route choice
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Recovery problem

* Recovery problem in 3 phases (Binder et al. (2017b), Veelenturf et
al. (2015), Cacchiani et al. (2014)) :

Timetable rescheduling

$
$

Rolling stock allocation

Crew assignment
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Timetable rescheduling problem

* Overview and Classification (Cacchiani et al., 2014)

Disturbance
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Timetable rescheduling problem

Passenger

Kroon et al. (2015)

Hao et al. (2018)

Corman et al. (2016) Binder et al. (2017a)

Binder et al. (2017b)

Zhu and Goverde (2019)

Micro « » Macro

Veelenturf et al. (2015)

Operation
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Modelling approaches

e Space - time: Kroon et al. (2015), Binder et al.
Network (2017a,b), Hao et al. (2018)

Graph e Event - activity: Zhu and Goverde (2019),
Veelenturf et al. (2015)

e Dividable: Kroon et al. (2015), Hao et al. (2018)

e Not dividable: Corman et al. (2016), Binder et
al. (20173, b), Zhu and Goverde (2019)

Passenger
Groups
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Recovery decisions
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Modify Rolling Stock X
Delay X X X X X
Order X X X X X
Reroute X X X X
Cancel X X X
Emergency Trains X
Additional stops X X X
Skip stops / short turns X
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Viriato and Algorithm Platform

Algorithm Platform

Timetable Data> A
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Infrastructure Data
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Datasets

* Passenger trips - ARE (2010)

* CH split into zones
* Demand of trips between zones

* Travel time and distance

* Viriato - SMA und Partner AG

* Part of SBB railway network (stations, junctions, tracks, capacity)

* Train schedule and paths
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Data preparation

I

* Initial demand assignment

ARE dataset

A

y

Passenger deman

d between zones

Viriato
database

\ 4

and timetables

Network topology, train paths

y

Network graph consisting
of zones and stations

y

Route choice of passengers
* Adapted Dijkstra

y

Number of passengers on trains
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Assignment of stations to zones

* Demand of a zone is considered, if the distance to closest station is below a
threshold

 Each zone is connected to several

stations: AN :
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Adapted Dijkstra’s shortest path algorithm

* Do not put the zones into the queue

* Add 2 of headway of |t leg train to mimic waiting time

at the first station
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Resulting path loads
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Problem definition by Binder et al.

* Multi-objective railway timetable rescheduling problem as an

Integer Linear Program:
* [, minimization of passenger inconvenience,
* f,:minimization of operational costs, and

* f 4 minimization of the deviation from the undisrupted

timetable.
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Network model

I

* Discretized planning horizon (I minute period)
* Macroscopic model of railway network
 Stations - with or without a shunting yard
* Tracks — considered to be bidirectional
* Original and emergency trains

* The latter deployed only from the shunting yards
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Time-expanded network
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Recovery decisions

S
e Cancellation: A train may be fully or partially canceled

* Delay: The arrival or departure may be delayed up to a maximal amount
of time

* Rerouting: A train may be rerouted through another path than the

originally planned one
* Emergency train: At every station with a shunting yard, a limited

number of emergency trains is available

* Emergency bus:If the track between two neighboring stations is

disrupted, an emergency bus may be scheduled to connect the two

stations directly
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Passenger travel choice
T

* Passenger: (0,,d,,t,)
* Travel options: (A(0,, d,)
* Generalized path cost for passenger p and path w €
Q(op, d,):
ct =vrP +p,-WTE + B, - NT) + B5 - EDE + B, - LDY
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Solution methodology (Binder et al.)

* In real cases, the problem is too big to be solved exactly

* Heuristic approach: generate a set of “good” disposition

timetables, and quantify the trade-off between the objectives
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Solution methodology

* Adaptive Large Neighborhood Search (ALNS) meta-heuristic

is implemented to construct the disposition timetable

* Neighborhood operators are inspired from real-life recovery

strategies
* Each operator is chosen with a certain probability
* Probabilities are updated during the execution

* The algorithm keeps track of non-dominated solutions using

an archive of solutions
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Neighborhood operators

* Cancel trains completely

* Cancel trains after a given station

* Delay trains completely

* Delay trains after a given station

* Reroute trains between neighboring stations
* Add an emergency train

* Add an emergency bus
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Passenger assighment procedure

Passenger Passenger
demand priority list

Timetable

Passenger
assignment

Passenger
flows
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Results

* The three-dimensional Pareto frontier allows to analyze the

trade-off between the objectives f
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Implementation with Viriato and Algorithm Platform

e Data:
e Network data

e Timetables

e Used REST APl methods:

* Data access methods
* neighbor-nodes — nodes connected with a direct track

* section-tracks-between — finding a sequence of tracks which link two
nodes

* section-tracks-parallel-to — finding a parallel section for a given input
* set-section-track — defining the section tracts for a train path
* reroute-train — set the new path and the used section tracks

Scenario definition methods
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Conclusions
o

* From the previous research:

* Proposed methodology gives satisfactory results and allows

analysis of the trade-offs between the different objectives

* Significant improvements can be achieved in passenger
satisfaction with only a minor increase in the operational cost of

the timetable

* The higher the deviation from the undisrupted timetable is
allowed, the better the timetable will perform in terms of

passenger satisfaction and operational cost
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Conclusions

* Viriato provides access to valuable data

* By using the Viriato environment and off-the-shelf methods of

Algorithm Platform, algorithm development is faster
* Expert can focus on the scientific work
* Faster industrial application of theoretical developments

* Viriato could be improved by including demand models
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Future work

* H2020 project (or similar program) application:

* Intelligent algorithms for real-time railway management
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Thank you!
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Questions?
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