Pedestrian flow characteristics based on individual trajectories

Marija Nikolić Bilal Farooq Michel Bierlaire

TRANSP-OR, Ecole Polytechnique Fédérale de Lausanne

DATA SIM Summer School July 15th, 2013, Hasselt University, Belgium

Content

- Interest & Motivation
- Methodology
- Preliminary results
- Conclusions and future work

Interest & motivation

- Mathematical modeling of pedestrian dynamics
- Understanding and predicting the evolution of pedestrians
 - Efficient design of new facilities
 - Large events gathering a high number of people
 - Travel guidance
 - Congestion

Evacuation

More Than 950 Iraqis Die in Stampede on Baghdad Bridge

The New York Times

Iroquois Theatre fire, 605 people died

1989: Football fans crushed at Hillsborough

BBC News

Congestion *Lausanne railway station*

Related work

- Modeling approaches inspired by physics, artificial intelligence, biology, traffic flow theory
- Microscopic vs. macroscopic
 - Social force model (Helbing and Molnár, 1995)
 - Continuum models (Hughes, 2002)
- Aggregated vs. disaggregated
 - Social force model; Queuing model (Løvås, 1994)
 Discrete choice models (Antonini et al., 2006)
- Discrete vs. continuous
 - Cellular automata (Blue and Adler, 2001)
 - Continuum models (Hughes, 2002)

Missing – detailed representation of congestion based on recent data

. . .

Strategy *Step by step*

- Evaluation of data potential
- Good estimation of congestion indicators
 - Density, flow, speed

Strategy *Step by step*

Evaluation of data potential

Good estimation of congestion indicators

- Density, flow, speed

Data collection

Source: (Alahi et al., 2013)

- 76 smart sensors capture flow at Lausanne train station
 - Corridors West (PIW) and East (PIE)
 - Tracks 3-4

- People are automatically:
 - Located in 3D
 - Tracked across time

Data potential

• Trajectory

[time, x, y, pedestrian_{id}]

- Describe the essential parts of the pedestrian motion behavior
 - Interaction with moving and static objects (other pedestrians, obstacles)
 - Collective behavior and self-organization of pedestrian groups
 - Flow characteristics
- Model calibration and validation

Exploratory data analysis

- Time-space patterns
- Qualitative analysis
 - Visualization tool
 - Macroscopic and microscopic aspects
- Quantitative analysis
 - Effects of congestion on pedestrian dynamics
 - Effects of different spatial aggregation levels on observables

Critical time periods

Two critical periods of time:

- 7am 8am
- 5pm 6pm

The most critical time:

- From 7:10 am to 7:25 am
- From 7:35 am to 7:50 am

Frequently used paths and areas *PIW - peak day*

ECOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Qualitative data analysis Microscopic

PIW corridor

18.09.2012.07:16-07:18

PIW stairs/ramps

Qualitative data analysis Macroscopic

SP-OR

Lane formation

Hypothesis

Lane allows for a more comfortable flow for people who walk in the same direction

Distance & time observables

Strategy *Step by step*

- Evaluation of data potential
- Good estimation of congestion indicators
 - Density, flow, speed

Pedestrian flow characteristics

- Density (k) number of pedestrians present at some instant per unit of space
- Flow (q) number of pedestrians passing a fixed point per unit of time
- Speed
 - Space mean speed (v_s) average speed of pedestrians at some instant per unit of space
 - Time mean speed (v_t) average speed of pedestrians passing through a given point per unit of time

Fundamental diagram Literature

Complex nature of pedestrian interactions External factors Social and psychological aspects Different types of facilities Different types of pedestrian flow Measurement methods

Source: (Daamen et al., 2005)

Fundamental diagram *Measurement methods*

- Methods based on time aggregation
 - Mean value of flow
 - Time mean speed
- Methods based on space aggregation
 - Mean value of density
 - Space mean speed
 - Time and space discretization

Grid space representation *Density*

• The grid based method transforms the space into cell regions

Corridor density map (18.09.2012, 07:17:01)

– Each cell is seen as entirely homogenous

- Cell sizes: 2.5m ×43m, 2.5m ×21.5m, 2.5m×10.75m
- Modifiable areal unit problem

Voronoi space representation Density

Table: Pedestrian walkway LoS density threshold values according to NCHRP (in SI units).

- $\begin{array}{l} \text{Voronoi space discretization} \\ V_p(p_i) = \ \left\{ p | \| p p_i \| \leq \left\| p p_j \right\|, j \in \{1, \dots, N_p\} \backslash \{i\} \right\} \end{array}$
 - N_p number of pedestrians

 $\mathbf{p}_i \text{ and } \mathbf{p}_j$ - pedestrians' position

- ✓ Flexible
- $\checkmark\,$ Better resolution in space

Voronoi space representation *Issues*

- Small polygons allocated to pedestrians in very dense areas
 - Clustering based on Delaunay triangulation
 - Threshold distance: 0.1915m

Free flow speed *Empirical observations*

The speed pedestrians walk with when they are not constrained

Voronoi based personal region - density less than 0.05 ped/m²

$$\overrightarrow{v_i}(t) = \frac{\overrightarrow{x_i}(t + \Delta t) - \overrightarrow{x_i}(t - \Delta t)}{2 \cdot \Delta t}$$

- Literature (Daamen et al., 2006)
 - Mean: 1.34 m/s
 - Max: 1.65 m/s
 - Min: 0.97 m/s

Speed-density relationship *Empirical observations*

Density: $\frac{1}{A_i}$ A_i -personal area assigned to pedestrian i

Speed:
$$\overrightarrow{v_i}(t) = \frac{\overrightarrow{x_i}(t+\Delta t) - \overrightarrow{x_i}(t-\Delta t)}{2 \cdot \Delta t}$$

 $\Delta t = 0.5s$

Probabilistic speed-density model

Weekly change of speed-density relationship

Speed distribution *Maximum likelihood*

Density levels (ped/m²)

Goodness of fit

• Chi-squared test

 $\mathcal{X}^2 = \sum_i [(O_i - E_i)^2 / E_i]$

- Null hypothesis: a statistical (theoretical) model fits a set of empirical observations
- Result: rejected at 0.05 level of significance
- Fitting does not explain!
 - Addition of explanatory variables

Speed-density relationship *Effects of time aggregation*

Time discretization

- Voronoi based
 - Fixed number of pedestrians within each time interval
- Motivation
 - Consistent with the philosophy of space decomposition
 - Observables have comparable statistical accuracy
 - Independent of the occurring flow

Conclusion

- High data potential
 - Behavioral and flow aspects
- Voronoi representation of space and time
 - Consistent philosophy for time and space decomposition
 - Good space resolution
 - Independent of the occurring flow
- Probabilistic fundamental diagram
- Lot of work need to be done!

Future work

- Voronoi based space representation
 - Dealing with obstacles
- Voronoi based time representation
 - Investigation of appropriate time discretization
- Probabilistic fundamental diagram

THANK YOU

References 1/2

- Alahi, A., L., Bagnato, Chanel D. and A., Alahi (2013) Visiosafe Analytic, Technical report for SBB network of sensors (Switzerland)
- Antonini, G., Bierlaire, M., Weber, M., 2006. Discrete choice models of pedestrian walking behavior. Transp. Res. Part B Methodol. 40, 667–687.
- Blue, V.J., Adler, J.L., 2001. Cellular automata microsimulation for modeling bidirectional pedestrian walkways. Transp. Res. Part B Methodol. 35, 293–312.
- Daamen, W., Hoogendoorn, S. P., & Bovy, P. H., 2005. First-order pedestrian traffic flow theory. Transportation Research Record: Journal of the Transportation Research Board, 1934(1), 43-52.
- Daamen, W., & Hoogendoorn, S. P., 2006. Free speed distributions for pedestrian traffic. In TRB-Annual Meeting, Washington.
- Helbing, D., Molnár, P., 1995. Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286.

References 2/2

- Haizhong Wang, Jia Li, Qian-Yong Chen, and Daiheng Ni., 2009. Speed-Density Relationship: from Deterministic to Stochastic (Paper # 09-1527). The 88th Transportation Research Board (TRB) Annual Meeting. Washington, D.C.
- Hughes, R.L., 2002. A continuum theory for the flow of pedestrians. Transp. Res.
 Part B Methodol. 36, 507–535.
- Løvås, G.G., 1994. Modeling and simulation of pedestrian traffic flow. Transp. Res. Part B Methodol. 28, 429–443.
- Nikolic, M., Farooq, B., and Bierlaire, M., 2013. Exploratory analysis of pedestrian flow characteristics in mobility hubs using trajectory data. Proceedings of the Swiss Transportation Research Conference (STRC) 24-26 April, 2013.

