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Background - context

Understanding and predicting of pedestrian traffic
e Convenience and safety for pedestrians

e LOS indicators: based on data or/and models of pedestrian
dynamics

Traffic indicators

e Density: the number of pedestrians present in an area at a
certain time instance [#ped/m?]

e Flow: the number of pedestrians passing a line segment in a
unit of time [#ped/ms]

e Velocity: the average of the velocities of pedestrians present
in an area at a certain time instance / passing a line segment
in a unit of time [m/s]
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Characterization based on Edie's definitions

General formulation

t ﬁl:ti
Density: k(V) = K dy<dt

! TT . Flow: ¢(V)

_ i
T dxxdyxdt

- y
o yARN 7X g(V %dl
ap Velocity: V(V) = ngg =5

-M

[van Wageningen-Kessels et al., 2014 ], [Saberi and Mahmassani, 2014]
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Characterization based on Edie's definitions

Limit conditions

th t4

X dt

t=tn X=Xm

Photo: [Saberi and Mahmassani, 2014]
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Characterization based on Edie's definitions

e Results depend on size, shape and the placement of a
measurement unit
— May be highly sensitive to minor changes
e Arbitrary aggregation
— May generate noise in the data [Openshaw, 1983]
— May lead to loss of heterogeneity across space

Density indicator
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Characterization based on Edie's definitions

o Arbitrary aggregation
— May lead to loss of heterogeneity across pedestrians
— Does not comply with multi-directional nature of pedestrian
flows

e Extreme case: velocity and flow vectors cancel out when 2
equally sized streams of pedestrians walk with the same speed
but in the opposite directions

Velocity and flow indicators
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Voronoi-based spatial discretization

e A personal region A; is asigned to each pedestrian i

e Each point p = (x,y) in the personal region is closer to i
positioned at p; = (x;, y;) than to any other pedestrian, with
respect of the Euclidean distance

Ai = {plde(p, pi) < de(p, pj), Vj}
e Pedestrian flows: [Steffen and Seyfried, 2010]
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Data-driven discretization framework

Pedestrian trajectories
e The trajectory of pedestrian / is a curve in space and time
pi = (i, Yis ti)
3D Voronoi diagrams associated with trajectories

Each trajectory I'; is associated with a 3D Voronoi "tube’ V;

A point p = (x,y, t) belongs to the set V; if
d(p, i) = min{d.(p, pi)|pi € T;}

e d.(p, p;) - spatio-temporal assignment rule
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Data-driven discretization framework

Sample of points
e The trajectory is described as a finite collection of triplets
Pis = (Xisay:'a ts):ts = [t07 t, .. tf]
3D Voronoi diagrams associated with the points
Pis = (Xi57)/i57 ts)
e Each point pj; is associated with a 3D Voronoi cell Vs

A point p = (x,y, t) belongs to the set Vg if

di(p, pis) < di(p, pjs), Vi
e d.(p, pis) - spatio-temporal assignment rule
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Spatio-temporal assignment rules

Naive distance

dn(p, pi) = { o\é(p PP P othAetr;sg
Distance To Interaction (DTI)

dpri(p, pi) = { (\ﬁg“((_t;éﬁ)g%_),pl)’ otﬁsiv;sz

p=(x,y,t), pi = (xi,yi, ti), At =t — ¢;
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Spatio-temporal assignment rules

Time-Transform distance (TT)
drr(p,pi) = V/(x = x)? + (v — yi)? + a(t — t;)

« is a conversion constant expressed in meters per second

Mahalanobis distance
du(p, pi) = v/(p— Pi)TMi(p — p;)

e M; - symmetric, positive-definite matrix that defines how
distances are measured from the perspective of pedestrian i

pP= (X7y7 t)v pi = (Xi7yi7 ti)
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Voronoi-based traffic indicators

The set of all points in V; corresponding
to a specific time t

\/I(t) = {(Xayv t) S \/l} ~ [m2]

Density indicator
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Voronoi-based traffic indicators

The set of all points in V; corresponding to a
given location x and y

Vilx) = {(x,y,t) € Vi} ~ [ms]

Vity) = {(x,, ) € Vi} ~ [ms] e
Flow indicator
1
gi = < Vifx) )
Vily) |
Velocity indicator
=g |
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Empirical analysis

Scenarios

e Synthetic pedestrian trajectories
e Voronoi-based characterization for trajectories with dy, drr,
dm, dpTi

(|

~ TRANSP-D R ECOLE POLYTECHNIGUE

FEDERALL DE LAUSANNE

16 / 25




Properties of 3D Voronoi-based characterization

v’ Discretization is performed at the level of an individual:
suitable for multi-directional flow composition

e Reproduces different simulated settings with uniform and
non-uniform movement

e Preserves heterogeneity across pedestrians and space

e Discretization is adjusted to the reality of the flow: leads to
smooth transitions in measured traffic characteristics
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Unidirectional non-uniform straight-line movement
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Bidirectional non-uniform straight-line movement
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Properties of 3D Voronoi-based characterization

Discretization is performed at the level of an individual:
suitable for multi-directional flow composition

Reproduces different simulated settings with uniform and
non-uniform movement
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Preserves heterogeneity across pedestrians and space

e Discretization is adjusted to the reality of the flow: leads to
smooth transitions in measured traffic characteristics
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3D Voronoi-based characterization - density map

LOS Pedestrian density
Il A <0179 [ped/m?
. B <0270
C < 0.455
[]D0 <o714
B e <133
B F >1333
Table: Pedestrian walkway LoS density
threshold values according to NCHRP
i (in SI units).
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Properties of 3D Voronoi-based characterization

Discretization is performed at the level of an individual:
suitable for multi-directional flow composition

Reproduces different simulated settings with uniform and
non-uniform movement

Preserves heterogeneity across pedestrians and space
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Discretization is adjusted to the reality of the flow: leads to
smooth transitions in measured traffic characteristics
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3D Voronoi-based characterization vs. grid-based
method

Density sequences
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Robustness to the sampling rate

e Sample of points from synthetic pedestrian trajectories
obtained using different sampling rate

e Voronoi-based characterization for points with dy, dr1, du,
dpTi

Numerical analysis

e Statistics of interests: distribution of k and v errors for 1000
randomly sampled points

(A )
=Z TRANSP-OR —.ﬂﬂ.

ECOLE POLYTECEINIGUE
FEDERALL DE LAUSANNE

22 /25



Unidirectional uniform straight-line movement

Density indicator
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Unidirectional non-uniform straight-line movement

Density indicator
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Unidirectional non-uniform zig-zag movement

Density indicator
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Bidirectional uniform straight-line movement
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Bidirectional non-uniform

Density indicator

straight-line movement

Speed indicator
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Bidirectional non-uniform zig-zag movement
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Crossing uniform straight-line movement
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Conclusions

e Pedestrian-oriented flow characterization: Edie’s definitions
adapted through a data-driven discretization

e Suitable for multi-directional flow composition

e Reproduces different simulated settings with uniform and
non-uniform movement

e Preserves heterogeneity across pedestrians and space

e Leads to smooth transitions in measured traffic characteristics
e Sampled data: 3D Voronoi diagrams with Time-Transform
distance perform the best

— Reproduces different simulated settings
— Robust with respect to the sampling rate
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Future directions

¢ Additional spatio-temporal assignment rules will be tested
e More numerical analysis based on synthetic and real-world
data (case study: Lausanne train station)

e Stream-based definitions of indicators and their interaction
[Nikoli¢ and Bierlaire, 2014]
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Thank you for your attention J

Marija Nikoli¢

Transport and Mobility Laboratory

EPFL - Ecole Polytechnique Fédérale de Lausanne
marija.nikolic@epfl.ch
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Mahalanobis distance

Directions of interest

) Xi(s4+1)
Pis = (Xi57)/is> ts)v Vi(ts) = tor1)—ts Yi(s+1) — Vis
1

d(ts) = 2 [d(t)]| = 1

dy(ts)
d*(ts) = (df(t)),dl(ts)sz(fs) 1)) =1
0

0
d*(ts) = ( 0 ) 1d3(t)|] = t(s1) — ts
(

t 5+1) - ts
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Mahalanobis distance

Change of coordinates

Si(ts,0) = pis + (t(s41) — ts)Vi(ts) + 6d*(ts)

Sa(ts, ) = pis — (ts+1) — ts)Vi(ts) — 6d™ (ts)
S3(ts, 0) = pis + 0d>(ts)
Sa(ts, 6) = pis — 6d>(ts)
Ss(ts, 6) = pis + 6d3(ts)
S6(ts,8) = pis — 0d>(ts)

du = /(Sj(ts,6) — pis) T Mis(Sj(ts,6) — pis) =6,/ =1,..,6 )
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