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Background - context

Understanding and predicting of pedestrian tra�c

• Convenience and safety for pedestrians

• LOS indicators: based on data or/and models of pedestrian
dynamics

Tra�c indicators

• Density: the number of pedestrians present in an area at a
certain time instance [#ped/m2]

• Flow: the number of pedestrians passing a line segment in a
unit of time [#ped/ms]

• Velocity: the average of the velocities of pedestrians present
in an area at a certain time instance / passing a line segment
in a unit of time [m/s]
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Characterization based on Edie's de�nitions

General formulation

Density: k(V ) =

N∑
i
ti

dx×dy×dt

Flow: ~q(V ) =

N∑
i
di

dx×dy×dt

Velocity: ~v(V ) = ~q(V )
k(V ) =

N∑
i
di∑

i
ti

[van Wageningen-Kessels et al., 2014 ], [Saberi and Mahmassani, 2014]
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Characterization based on Edie's de�nitions

Limit conditions

Photo: [Saberi and Mahmassani, 2014]
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Characterization based on Edie's de�nitions

• Results depend on size, shape and the placement of a
measurement unit

� May be highly sensitive to minor changes
• Arbitrary aggregation

� May generate noise in the data [Openshaw, 1983]
� May lead to loss of heterogeneity across space

Density indicator
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Characterization based on Edie's de�nitions

• Arbitrary aggregation
� May lead to loss of heterogeneity across pedestrians
� Does not comply with multi-directional nature of pedestrian

�ows
• Extreme case: velocity and �ow vectors cancel out when 2
equally sized streams of pedestrians walk with the same speed
but in the opposite directions

Velocity and �ow indicators
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Voronoi-based spatial discretization

• A personal region Ai is asigned to each pedestrian i

• Each point p = (x , y) in the personal region is closer to i
positioned at pi = (xi , yi ) than to any other pedestrian, with
respect of the Euclidean distance

Ai = {p|dE (p, pi ) ≤ dE (p, pj),∀j}

• Pedestrian �ows: [Ste�en and Seyfried, 2010]
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Data-driven discretization framework

Pedestrian trajectories

• The trajectory of pedestrian i is a curve in space and time

pi = (xi , yi , ti )

• 3D Voronoi diagrams associated with trajectories

• Each trajectory Γi is associated with a 3D Voronoi 'tube' Vi

• A point p = (x , y , t) belongs to the set Vi if

d(p, Γi ) ≤ d(p, Γj),∀j

d(p, Γi ) = min{d∗(p, pi )|pi ∈ Γi}

• d∗(p, pi ) - spatio-temporal assignment rule
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Data-driven discretization framework

Sample of points

• The trajectory is described as a �nite collection of triplets

pis = (xis , yis , ts),ts = [t0, t1, ..., tf ]

• 3D Voronoi diagrams associated with the points
pis = (xis , yis , ts)

• Each point pis is associated with a 3D Voronoi cell Vis

• A point p = (x , y , t) belongs to the set Vis if

d∗(p, pis) ≤ d∗(p, pjs), ∀j
• d∗(p, pis) - spatio-temporal assignment rule
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Spatio-temporal assignment rules

Naive distance

dN(p, pi ) =

{ √
(p − pi )T (p − pi ), ∆t = 0
∞, otherwise

Distance To Interaction (DTI)

dDTI (p, pi ) =

{ √
(p − pi )T (p − pi ), ∆t = 0

(p−pi (ti+∆t))~vi (ti )
‖(~vi (ti ))‖ , otherwise

p = (x , y , t), pi = (xi , yi , ti ), ∆t = t − ti
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Spatio-temporal assignment rules

Time-Transform distance (TT)

dTT (p, pi ) =
√

(x − xi )2 + (y − yi )2 + α(t − ti )

α is a conversion constant expressed in meters per second

Mahalanobis distance

dM(p, pi ) =
√

(p − pi )TMi (p − pi )

• Mi - symmetric, positive-de�nite matrix that de�nes how
distances are measured from the perspective of pedestrian i

p = (x , y , t), pi = (xi , yi , ti )
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Voronoi-based tra�c indicators

The set of all points in Vi corresponding
to a speci�c time t

Vi (t) = {(x , y , t) ∈ Vi} ∼ [m2]

Density indicator

ki = 1

Vi (t)

14 / 25



Voronoi-based tra�c indicators

The set of all points in Vi corresponding to a
given location x and y

Vi (x) = {(x , y , t) ∈ Vi} ∼ [ms]

Vi (y) = {(x , y , t) ∈ Vi} ∼ [ms]

Flow indicator

~qi =

(
1

Vi (x)
1

Vi (y)

)
Velocity indicator

~vi = ~qi
ki
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Empirical analysis

Scenarios

• Synthetic pedestrian trajectories

• Voronoi-based characterization for trajectories with dN , dTT ,
dM , dDTI

16 / 25



Properties of 3D Voronoi-based characterization

! Discretization is performed at the level of an individual:
suitable for multi-directional �ow composition

• Reproduces di�erent simulated settings with uniform and
non-uniform movement

• Preserves heterogeneity across pedestrians and space

• Discretization is adjusted to the reality of the �ow: leads to
smooth transitions in measured tra�c characteristics
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Unidirectional non-uniform straight-line movement



Bidirectional non-uniform straight-line movement



Properties of 3D Voronoi-based characterization

! Discretization is performed at the level of an individual:
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3D Voronoi-based characterization - density map
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Properties of 3D Voronoi-based characterization

! Discretization is performed at the level of an individual:
suitable for multi-directional �ow composition

! Reproduces di�erent simulated settings with uniform and
non-uniform movement

! Preserves heterogeneity across pedestrians and space

! Discretization is adjusted to the reality of the �ow: leads to
smooth transitions in measured tra�c characteristics
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3D Voronoi-based characterization vs. grid-based

method

Density sequences
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Robustness to the sampling rate

• Sample of points from synthetic pedestrian trajectories
obtained using di�erent sampling rate

• Voronoi-based characterization for points with dN , dTT , dM ,
dDTI

Numerical analysis

• Statistics of interests: distribution of k and v errors for 1000
randomly sampled points
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Unidirectional uniform straight-line movement

Density indicator
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Unidirectional non-uniform straight-line movement

Density indicator
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Unidirectional non-uniform zig-zag movement

Density indicator
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Bidirectional uniform straight-line movement

Density indicator
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Bidirectional non-uniform straight-line movement
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Bidirectional non-uniform zig-zag movement
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Crossing uniform straight-line movement

Density indicator

0

1

2

Naive Time−transform Mahalanobis DTI

E
rr

o
r[

k
]

rate:0.5s

0

1

2

Naive Time−transform Mahalanobis DTI

E
rr

o
r[

k
]

rate:1s

0

1

2

Naive Time−transform Mahalanobis DTI

E
rr

o
r[

k
]

rate:1.5s

Speed indicator

0

2

4

6

Naive Time−transform Mahalanobis DTI

E
rr

o
r[

v
]

rate:0.5s

0

2

4

6

Naive Time−transform Mahalanobis DTI

E
rr

o
r[

v
]

rate:1s

0

2

4

6

Naive Time−transform Mahalanobis DTI

E
rr

o
r[

v
]

rate:1.5s



Conclusions

• Pedestrian-oriented �ow characterization: Edie's de�nitions
adapted through a data-driven discretization

• Suitable for multi-directional �ow composition

• Reproduces di�erent simulated settings with uniform and
non-uniform movement

• Preserves heterogeneity across pedestrians and space

• Leads to smooth transitions in measured tra�c characteristics

• Sampled data: 3D Voronoi diagrams with Time-Transform
distance perform the best

� Reproduces di�erent simulated settings
� Robust with respect to the sampling rate
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Future directions

• Additional spatio-temporal assignment rules will be tested

• More numerical analysis based on synthetic and real-world
data (case study: Lausanne train station)

• Stream-based de�nitions of indicators and their interaction
[Nikoli¢ and Bierlaire, 2014]
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Thank you for your attention

Marija Nikoli¢
Transport and Mobility Laboratory
EPFL - École Polytechnique Fédérale de Lausanne
marija.nikolic@ep�.ch
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Mahalanobis distance

Directions of interest

pis = (xis , yis , ts), vi (ts) = 1

t(s+1)−ts

 xi(s+1) − xis
yi(s+1) − yis

1


d1(ts) = vi (ts)

||vi (ts)|| , ||d
1(ts)|| = 1

d2(ts) =

 d1
x (ts)

d2
y (ts)
0

, d1(ts)Td2(ts) = 0, ||d2(ts)|| = 1

d3(ts) =

 0
0

t(s+1) − ts

, ||d3(ts)|| = t(s+1) − ts
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Mahalanobis distance

Change of coordinates

S1(ts , δ) = pis + (t(s+1) − ts)vi (ts) + δd1(ts)

S2(ts , δ) = pis − (t(s+1) − ts)vi (ts)− δd1(ts)

S3(ts , δ) = pis + δd2(ts)

S4(ts , δ) = pis − δd2(ts)

S5(ts , δ) = pis + δd3(ts)

S6(ts , δ) = pis − δd3(ts)

dM =
√

(Sj(ts , δ)− pis)TMis(Sj(ts , δ)− pis) = δ, j = 1, .., 6
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