Impact analysis of a flexible air transportation system: Clip-Air

Michel Bierlaire, Bilge Atasoy, Matteo Salani, Claudio Leonardi

Transport and mobility laboratory EPFL

June, 2013

Outline

- 2 Schedule Planning Model
- Comparative Analysis
- 4 Conclusions
- 5 Future Work

Outline

- 2 Schedule Planning Model
- 3 Comparative Analysis
- 4 Conclusions
- 5 Future Work

- Flexibility in transportation systems
 - Robustness
 - Demand responsiveness

- Rail transportation \Rightarrow modularity in fleet
- Maritime transportation \Rightarrow standard unit loads, multi-modality
- Air transportation \Rightarrow revenue management

Flexibility

Flexibility of Clip-Air

Modularity

Decoupling of wing and capsules

Illustration - Modularity

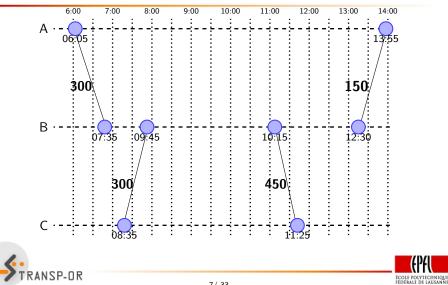
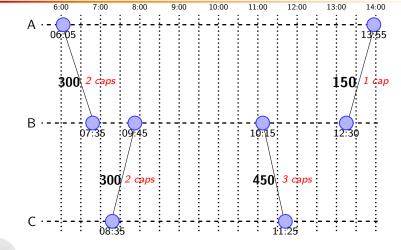
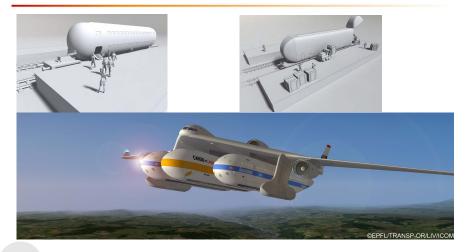



Illustration - Modularity

Comparative Analysis

Multi-modality


Comparative Analysis

Conclusions

Future Work

Mixed passenger and cargo

ANSP-OR

Energy

Outline

- 2 Schedule Planning Model
- 3 Comparative Analysis
- 4 Conclusions
- 5 Future Work

Model framework

Decisions

- Fleet assignment
 - Assignment of wings to the flights
 - Assignment of capsules to the wings
- Schedule selected optional flights
- Seat allocation to economy and business class
- The spilled number of passengers
- Supply-demand interactions demand model
 - Spill and recapture
 - Itinerary choice model

Model framework

Decisions

- Fleet assignment *Modularity*
 - Assignment of wings to the flights
 - Assignment of capsules to the wings
- Schedule selected optional flights
- Seat allocation to economy and business class
- The spilled number of passengers
- Supply-demand interactions (demand model
 - Spill and recapture
 - Itinerary choice model *Demand management*

$$\operatorname{Min}\sum_{f\in F} \left(C_f^w x_f^w + \sum_{k\in K} C_{k,f} x_{k,f}\right) + \sum_{h\in H} \sum_{s\in Sh} \sum_{i\in (l_S\setminus l'_S)} \left(\sum_{j\in l_S} t_{i,j} - \sum_{j\in (l_S\setminus l'_S)} t_{j,i} b_{j,i}\right) p_i \tag{1}$$

s.t.
$$\sum_{k \in K} x_{k,f} = 1$$
 $\forall f \in F^M$ (2)

$$\boxed{\sum_{k \in K} x_{k,f} \le x_f^w} \qquad \qquad \forall f \in F \qquad (3)$$

$$y_{a,t^{-}}^{w} + \sum_{f \in In(a,t)} x_{f}^{w} = y_{a,t^{+}}^{w} + \sum_{f \in Out(a,t)} x_{f}^{w} \qquad \forall [a,t] \in N$$
(4)

$$\sum_{a \in A} y_{a,\min E_a^-}^w + \sum_{f \in CT} x_f^w \le R_w$$
(5)

$$y_{a,minE_a}^w = y_{a,maxE_a}^w \qquad \forall a \in A \tag{6}$$

$$y_{a,t^{-}}^{k} + \sum_{\substack{f \in In(a,t)\\ k \in K}} k \times_{k,f} = y_{a,t^{+}}^{k} + \sum_{\substack{f \in Out(a,t)\\ k \in K}} k \times_{k,f} \qquad \forall [a,t] \in N$$

$$(7)$$

$$\sum_{a \in A} y_{a,\min \mathbf{E}_a}^k + \sum_{\substack{f \in CT\\k \in K}} k x_{k,f} \le R_k$$
(8)

$$y_{a,mnE_a^-}^k = y_{a,maxE_a^+}^k \qquad \forall a \in A$$
(9)

$$\begin{aligned} & \text{Min} \sum_{f \in F} (C_f^w x_f^w + \sum_{k \in K} C_{k,f} x_{k,f}) + \sum_{h \in H} \sum_{s \in Sh} \sum_{i \in (I_S \setminus I_S')} (\sum_{j \in I_S} t_{i,j} - \sum_{j \in (I_S \setminus I_S')} t_{j,i} b_{j,i}) p_i \text{ op. } costs + loss of pax. \end{aligned}$$
(1)

$$s.t. \sum_{k \in K} x_{k,f} = 1 \text{ mandatory flights} & \forall f \in F^M \quad (2)$$

$$\boxed{\sum_{k \in K} x_{k,f} \leq x_f^w} \text{ wing-capsule relation} & \forall f \in F \quad (3)$$

$$y_{a,t}^w - + \sum_{f \in In(a,t)} x_f^w = y_{a,t}^w + \sum_{f \in Out(a,t)} x_f^w \text{ flow cons. wings} & \forall [a,t] \in N \quad (4)$$

$$\sum_{a \in A} y_{a,\min E_a^-}^w - y_{a,\max E_a^+}^w \text{ cyclic wings} & \forall a \in A \quad (6)$$

$$y_{a,t}^k - + \sum_{f \in In(a,t)} k x_{k,f} = y_{a,t}^k + \sum_{f \in Out(a,t)} k x_{k,f} \text{ flow cons. capsules} & \forall [a,t] \in N \quad (7)$$

$$\sum_{a \in A} y_{a,\min E_a^-}^k - \sum_{f \in In(a,t)} k x_{k,f} \leq x_k \text{ available capsules} & (8)$$

$$y_{a,\min E_a^-}^k - y_{a,\max E_a^+}^k \text{ cyclic capsules} & \forall a \in A \quad (9)$$

$\sum_{s \in S^h} \sum_{i \in (I_s \setminus I'_s)} \delta^i_f D_i - \sum_{j \in I_s} \delta^j_f t_{i,j} + \sum_{j \in (I_s \setminus I'_s)} \delta^j_f t_{j,i} b_{j,i} \le \pi_{f,h}$	$\forall f \in F, h \in H$	(10)
$\boxed{\sum_{h\in \mathcal{H}} \pi_{f,h} \leq \sum_{k\in \mathcal{K}} Q \ k \ x_{k,f}}$	$\forall f \in F$	(11)
$\sum_{j\in I_{\mathcal{S}}}t_{i,j}\leq D_{i}$	$\forall h \in H, s \in S^h, i \in (I_s \setminus I'_s)$	(12)
$x_f^w \in \{0,1\}$	$\forall f \in F$	(13)
$x_{k,f} \in \{0,1\}$	$orall k \in K, f \in F$	(14)
$y_{a,t}^w \ge 0$	$orall [a,t] \in N$	(15)
$y_{a,t}^k \ge 0$	$\forall [a,t] \in N$	(16)
$\pi_{f,h} \ge 0$	$\forall f \in F, h \in H$	(17)
$t_{i,j} \ge 0$	$\forall h \in H, s \in S^h, i \in (I_s \setminus I'_s), j \in I_s$	(18)

$\sum_{s \in S^{h}} \sum_{i \in (I_{S} \setminus J_{S}^{i})} \delta_{i}^{i} D_{i} - \sum_{j \in I_{S}} \delta_{f}^{i} t_{i,j} + \sum_{j \in (I_{S} \setminus J_{S}^{i})} \delta_{j}^{i} t_{j,i} b_{j,i} \leq \pi_{f,h} \text{ demand-supply}$	$\forall f \in F, h \in H$	(10)
$\boxed{\sum_{h \in H} \pi_{f,h} \leq \sum_{k \in K} Q \ k \ x_{k,f}} k \text{ capsules up to } 3$	$\forall f \in F$	(11)
$\sum_{j \in I_S} t_{i,j} \leq D_i$ spilled passengers	$\forall h \in H, s \in S^h, i \in (I_s \setminus I'_s)$	(12)
$x_f^w \in \{0,1\}$	$\forall f \in F$	(13)
$x_{k,f} \in \{0,1\}$	$\forall k \in K, f \in F$	(14)
$y_{a,t}^{w} \ge 0$	$orall [a,t] \in N$	(15)
$y_{a,t}^k \ge 0$	$\forall [a,t] \in N$	(16)
$\pi_{f,h} \ge 0$	$\forall f \in F, h \in H$	(17)
$t_{i,j} \ge 0$	$\forall h \in H, s \in S^h, i \in (I_s \setminus I'_s), j \in I_s$	(18)

Outline

- 2 Schedule Planning Model
- 3 Comparative Analysis
- 4 Conclusions
- 5 Future Work

Configuration - Comparison with Airbus A320

		A320	Clip-Air
Maximum Capacity		150 seats	3x150(450 seats)
Engines		2 engines	3 engines
Maximum	1 (plane/capsule)	78t	139t (+78%)
Aircraft Weight	2 (planes/capsules)	2×78t (156t)	173.5t (+11%)
	3 (planes/capsules)	3x78t (234t)	208t (-11%)

Operating costs for *Clip-Air*

- Based on standard flight operating costs
- Adjustment based on weight differences:
 - Fuel costs 1 (25.3% of the total op. cost)
 - Airport and air navigation charges² (6%)
- Crew cost ¹ (24.8%) is separated between wing (flight crew) and capsules (cabin crew):
 - flight crew constitutes a 60% of the total crew cost
 - gain of 30% with 2 capsules
 - gain of 40% with 3 capsules

¹IATA,2010 ²Castelli and Ranieri, 2007; ICAO, 2012

• Fleet composition

• Fleet composition

• Standard fleet optimizes the fleet composition

• Fleet composition

- Standard fleet optimizes the fleet composition
- Clip-Air capsules are of same size

- Fleet composition
 - Standard fleet optimizes the fleet composition
 - Clip-Air capsules are of same size
- Operating cost of Clip-Air is higher

- Fleet composition
 - Standard fleet optimizes the fleet composition
 - Clip-Air capsules are of same size
- Operating cost of Clip-Air is higher
- The repositioning of empty capsules is ignored

- Fleet composition
 - Standard fleet optimizes the fleet composition
 - Clip-Air capsules are of same size
- Operating cost of Clip-Air is higher
- The repositioning of empty capsules is ignored
- We ignore potential savings related to maintenance, number of engines

- Fleet composition
 - Standard fleet optimizes the fleet composition
 - Clip-Air capsules are of same size
- Operating cost of Clip-Air is higher
- The repositioning of empty capsules is ignored
- We ignore potential savings related to maintenance, number of engines
- Only passenger transportation

- Fleet composition
 - Standard fleet optimizes the fleet composition
 - Clip-Air capsules are of same size
- Operating cost of Clip-Air is higher
- The repositioning of empty capsules is ignored
- We ignore potential savings related to maintenance, number of engines
- Only passenger transportation
- Total fleet investment cost is ignored

- Fleet composition
 - Standard fleet optimizes the fleet composition
 - Clip-Air capsules are of same size
- Operating cost of Clip-Air is higher
- The repositioning of empty capsules is ignored
- We ignore potential savings related to maintenance, number of engines
- Only passenger transportation
- Total fleet investment cost is ignored
- The schedule and the demand is assumed to remain the same

Towards results

- Input: data from Air France (ROADEF Challenge 2009)
 - set of optional and mandatory flights
 - set of airports
 - set of itineraries: demands and fares
 - set of aircraft for the standard fleet
- Performance measures
 - ASK: available seat kilometers
 - TPASK: transported pax. per available seat kilometers
- Tests:
 - Network effect
 - Fleet composition
 - Available capacity
 - Sensitivity analysis on the costs

Network effects - Airport pair

	Data	
Airports		2
Flights		38
Density (Flights/route)		19
Passengers		13,965
Itineraries		45
Standard fleet types	A320(150), A33	0(293), B747-200(452)
Results		
	Standard fleet	Clip-Air
Operating cost	1,607,166	1,725,228
Spill costs	604,053	448,140
Revenue	2,419,306	2,575,219
Profit	812,140	849,991 (+4.66 %)
Transported pax.	10,276	11,035 (+7.39 %)
Flight count	38	38
Total flight duration	3135 min	3135 min
Used fleet	2 A320	7 wings
	5 A330	12 capsules
Used aircraft	7	7
Used seats	1765	1800
ASK	78,388,063	79,942,500
TPASK (×10 ⁻⁵)	13.11	13.80

- Aircraft sizes are almost equivalent to 1, 2, 3 capsules
 - \Rightarrow same usage of capacity
- High flight density
 - \Rightarrow improved profit

Network effects - Hub and spoke

-	Data	
Airports		5
Flights		26
Density (Flights/route)		3.25
Passengers		9,573
Itineraries		37
Standard fleet types	A320(150), A330(293), B747-200(452)	
Results		
	Standard fleet	Clip-Air
Operating cost	817,489	938,007
Spill costs	484,950	393,677
Revenue	1,247,719	1,338,992
Profit	430,230	400,985 (- 6.80 %)
Transported pax.	5,031	5,721 (+ 13.71 %)
Flight count	24	22
Total flight duration	1850 min	1700 min
Used fleet	5 A320	6 wings
	2 A330	12 capsules
	1 B747	
Used aircraft	8	6
Used seats	1788	1800
ASK	46,860,500	43,350,000
TPASK ($\times 10^{-5}$)	10.74	13.20

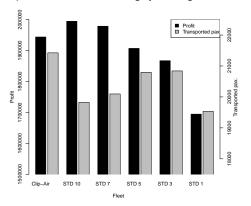
- Low flight density
 - $\Rightarrow \mathsf{less} \ \mathsf{potential}$
 - $\Rightarrow \mathsf{lower} \mathsf{ profit}$

Network effects - Peer-to-peer network

	Data	
Airports		4
Flights		98
Density (Flights/route)		8.17
Passengers		28,465
Itineraries		150
Standard fleet types	A320(150), A330(293), B747-200(452)	
	Results	
	Standard fleet	Clip-Air
Operating cost	3,189,763	3,117,109
Spill costs	982,556	978,683
Revenue	5,056,909	5,060,782
Profit	1,867,146	1,943,673 (+ 4.1 %)
Transported pax.	20,840	21,424 (+ 2.8 %)
Flight count	91	84
Total flight duration	6650 min	6160 min
Used fleet	7 A320	13 wings
	10 A330	28 capsules
	3 B747	
Used aircraft	20	13
Used seats	5336	4200 (- 21.3 %)
ASK	502,695,667	366,520,000
TPASK ($\times 10^{-}5$)	4.15	5.85

- High flight density
- Better connected network
 - $\Rightarrow \mathsf{increased} \ \mathsf{potential}$
 - \Rightarrow higher profit
 - \Rightarrow less allocated capacity
 - \Rightarrow significantly less aircraft

Network effects

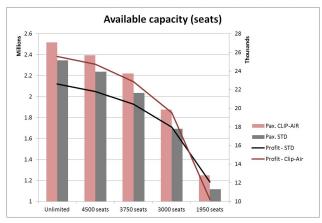

- Enhanced performance when...
 - High flight density
 - Well connected network

Fleet composition

The same data as peer-to-peer network Clip-Air always carries more passengers Standard fleet has more profit when the fleet is highly heterogeneous

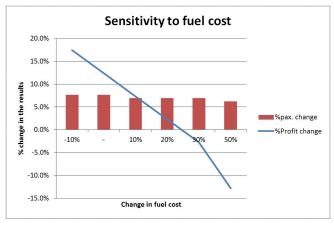
Available capacity

Airports	5
Flights	100
Density (Flights/route)	6.25
Passengers	35,510
Itineraries	140
Standard fleet types	A319(124), A320(150), A321(185),
	B747-200(452), B777(400)
Flights Density (Flights/route) Passengers Itineraries	100 6.25 35,510 140



Available capacity

Constraint on the total number of seats for the assigned fleet



Sensitivity analysis on the cost of Clip-Air

The same data used for the test on the available capacity

Outline

Flexibility

- 2 Schedule Planning Model
- 3 Comparative Analysis
- 4 Conclusions
- 5 Future Work

• Clip-Air better utilizes the capacity

• Clip-Air better utilizes the capacity

• More passengers...

• Clip-Air better utilizes the capacity

- More passengers...
- ... with less allocated capacity

- Clip-Air better utilizes the capacity
 - More passengers...
 - ... with less allocated capacity
- Clip-Air deals better with the insufficient capacity

- Clip-Air better utilizes the capacity
 - More passengers...
 - ... with less allocated capacity
- Clip-Air deals better with the insufficient capacity
- Results are robust to the cost values of Clip-Air

- Clip-Air better utilizes the capacity
 - More passengers...
 - ... with less allocated capacity
- Clip-Air deals better with the insufficient capacity
- Results are robust to the cost values of Clip-Air

- Clip-Air better utilizes the capacity
 - More passengers...
 - ... with less allocated capacity
- Clip-Air deals better with the insufficient capacity
- Results are robust to the cost values of Clip-Air
- Atasoy, B., Salani, M., Bierlaire, M., and Leonardi, C. (2013). Impact analysis of a flexible air transportation system, European Journal of Transport and Infrastructure Research 13(2): 123-146.

Outline

1 Flexibility

- 2 Schedule Planning Model
- 3 Comparative Analysis

Different wing and capsule sizes

- Clip-Air has a strength with one single wing/capsule type
- Different sizes can be studied
- Small wings/capsules: easier transport

Multi-modality of Clip-Air capsules

- Clip-Air capsules can be transfered via other means of transport
- Empty capsule management
- Demand fluctuations
- Unbalanced demand
- European market railways

Future Work

Thank you very much for your attention!

Spill and recapture Model

RANSP-OR

$$\begin{split} V_i &= -[2.23(-3.48) \times \text{nonstop}_i + 2.17(-3.48) \times \text{stop}_i] \times \ln(p_i/100) \\ &- [0.102(-2.85) \times \text{nonstop}_i + 0.0762(-2.70) \times \text{stop}_i] \times \text{time}_i \\ &+ 0.0283(1.21) \times \text{morning} \\ \end{split}$$

$$\begin{split} V_i &= -[1.97(-3.64) \times \text{nonstop}_i + 1.96(-3.68) \times \text{stop}_i [\times \ln (p_i/100) \\ &- [0.104(-2.43) \times \text{nonstop}_i + 0.0821(-2.31) \times \text{stop}_i] \times \text{time}_i \\ &+ 0.0790(1.86) \times \text{morning} \qquad \forall i \in I_s, s \in S^{bus.}, \end{split}$$

$$b_{i,j} = \frac{\exp(V_j)}{\sum_{k \in I_s \setminus \{i\}} \exp(V_k)} \quad \forall h \in H, s \in S^h, i \in (I_s \setminus I'_s), j \in I_s,$$

Spill and recapture

ANSP-OR

	clas	s nons	top	morni	ng	time	price	V
A-B ₁	E		0	0		250	300	-2.67
$A-B_2$	E		0		0	250	300	-2.70
$A-B_3$	E		1		0	80	200	-1.68
A-B ₄	E		1		1	80	200	-1.65
A-B	E		1		1	80	225	-1.92
		$A-B_1$	A-B	6 ₂ A	-B3	A-B ₄	A-E	3′
A-B ₁		-	0.11	3 0.	314	0.323	0.25	0
A	-B2	0.116		- 0.	314	0.322	0.24	8
A-B ₃		0.146	0.14	1	-	- 0.403 0.31		0
A	-B4	0.147	0.14	3 0.	396	-	0.31	4

