Gating as a management strategy for controlling pedestrian flows

Nicholas Molyneaux, Riccardo Scarinci, Michel Bierlaire

7th Symposium of the European Association for Research in Transportation (hEART)

September 5th 2018
Outline

1. Introduction

2. Proposed management strategies
 - Gating
 - Flow separators

3. Results
 - Gating results
 - Flow separators results

4. Conclusion & next steps
Introduction

Gating as a management strategy for controlling pedestrian flows
Context

Pedestrians suffer from congestion just as vehicles do:

- increased travel time,
- excessive density.

Which in turn can make you:

- be late for your job interview,
- despise traveling in public,
- miss you connecting train or plane,
- ...

Gating as a management strategy for controlling pedestrian flows
Context

Higher capacity & faster PT services, to serve higher demand.
Context

Some of the services available at the Lausanne (CH) train station...
Motivation

• Lack of comfort, hazardous situations

• How to ensure a satisfactory level-of-service & safety?
 – Decrease pedestrian demand (counter productive !)
 – Spread the load over time & space
 – Influence pedestrian’s routes
 – ...

• Simulation is needed to address the complexity of the problem

Goal: **Integrate management strategies specific to pedestrian traffic within a Dynamic Traffic Management System (DTMS).**
Framework

fig/framework.pdf
Strategies

What specific measures can be considered to impact dynamics:

- Adjustments to the PT schedule
- Control access to specific areas ⇒ gates
- Change link travel time ⇒ moving walkways
- Prevent counter flow ⇒ flow separators
- Attract pedestrians to specific locations
Existing strategies

Pedestrian management

- Little research on specific strategies.
- Some static measures (design) have been studied.

Road traffic management

- Ramp metering
- Perimeter control
- Variable message signs
- Traffic lights
- ...
Proposed management strategies

Gating as a management strategy for controlling pedestrian flows
Proposed strategies

Gating
Prevent excess travel time in junctions.

Flow separators
Avoid counter flow in corridors.
Proposed management strategies

Gating
Objective

At corridor intersections, highly disordered flows take place.

\[\downarrow\]

Prevent too many individuals from crossing the intersection simultaneously (qualitative). \[\rightarrow\] Prevent increase in travel time.

\[\downarrow\]

Measure pedestrian density (quantitative). \[\rightarrow\] How?
Measurement
Some possibilities for measuring density:

Pedestrian accumulation
• snapshot

Voronoi based
• snapshot

Edie’s definition
• average over time
Measurement
Some possibilities for measuring density:

Pedestrian accumulation

- snapshot
- sensitive to delimited area

Voronoi based

- snapshot
- expensive to compute

Edie’s definition

- average over time
- sensitive to delimited area
Measurement
Some possibilities for measuring density:

Pedestrian accumulation
- snapshot
- sensitive to delimited area
- provides average values

Voronoi based
- snapshot
- expensive to compute
- provides individual values
- aggregation may be required

Edie’s definition
- average over time
- sensitive to delimited area
- provides average values
- strong physical interpretation
Measurement

The indicator used is the following:

For a density threshold $\bar{\rho}$, for a given snapshot taken at time t, count the number of individuals where $\rho_i(t) > \bar{\rho}$.

This gives a pedestrian-centric measurement (nearly) independent of any “zone”.
Setup

The level-of-service must be measured and controlled inside area A.

fig/gating-zone.pdf
Control law

Parameters

• density threshold: $\bar{\rho}$
• uncontrolled flow: $f(0)$
• cut off value: $f(?) = 0$

Calibration based on:
• fundamental diagram
• distribution of individual densities
Proposed management strategies

Flow separators
Objective

Head-on-head “collisions” induce significant extra travel time.

\[\Downarrow \]

Reduce this counter-flow to a minimum.

\[\Downarrow \]

Dynamically allocate part of the available corridor width to each direction.
Setup

Figure: Schematic presentation of the devices used to separate the opposing flows. The inflow at each end determines the width available to each directed flow.

Gating as a management strategy for controlling pedestrian flows
Width available for each direction is proportional to flows:

\[
W_{AB} = \begin{cases}
 w \cdot f_{\min, AB}, & \text{if } \frac{\sum q_{in, A}}{\sum q_{in, A} + \sum q_{in, B}} \leq f_{\min, AB} \\
 w \cdot f_{\max, AB}, & \text{if } \frac{\sum q_{in, A}}{\sum q_{in, A} + \sum q_{in, B}} \geq f_{\max, AB} \\
 w \cdot \frac{\sum q_{in, A}}{\sum q_{in, A} + \sum q_{in, B}}, & \text{otherwise}
\end{cases}
\]
Results

Gating as a management strategy for controlling pedestrian flows
Case study setup

Gating

• crossed shaped junction
• demand pattern:
 – sinusoidal for two directions
 – uniform for other two

Flow separators

• straight corridor
• shifted sine-shaped flows
Case study setup

- Disaggregate pedestrian motion model: NOMAD.
- Graph-based route choice (but no significant role here).
- Multiple simulations runs.
Results

Gating results
Travel times

(a) Without gating

(b) With gating

No significant difference in mean travel time: 21.04s VS 21.18s
Reduction in travel time variance: 5.16s → 4.41s (−14%)
Average density

(a) Without gating

(b) With gating

Decrease of

• mean density: $1.57\, pax/m^2 \rightarrow 1.42\, pax/m^2 \quad (-9.5\%)$
• density variance: $0.93\, pax/m^2 \rightarrow 0.72\, pax/m^2 \quad (-22\%)$
Individual density

(a) Without gating
(b) With gating

Decrease of

- mean density: $2.18\text{pax/m}^2 \rightarrow 1.82\text{pax/m}^2$ (-16%)
- density variance: $1.22\text{pax/m}^2 \rightarrow 1.02\text{pax/m}^2$ (-16%)
Improvements

• less risk of gridlock.
• better level-of-service in the junction.

without increasing travel time.

Open questions:

• shape of the control law?
• parameter calibration?
• can travel time be improved?
Results
Flow separators results
Travel times

(a) Without flow separators

(b) With flow separators

Significant improvement in

- mean travel time: $37.86s \rightarrow 30.31s (−19\%)$
- travel time variance: $9.94s \rightarrow 3.39s (−66\%)$
Conclusion & next steps

Gating as a management strategy for controlling pedestrian flows
Conclusions

- Integration of two pedestrian control strategies in a DTMS.
- Gating improves the level-of-service and helps prevent gridlock.
- Flow separators significantly improves the travel time.

Next steps

1. Investigate more complex control laws.
2. Model predictive control.
3. Simulation based optimization.
Thank you for your attention!

nicholas.molyneaux@epfl.ch
Acknowledgments

This research was performed as part of the TRANS-FORM (Smart transfers through unravelling urban form and travel flow dynamics) project funded by the Swiss Federal Office of Energy SFOE and Federal Office of Transport FOT grant agreement SI/501438-01 as part of JPI Urban Europe ERA-NET Cofound Smart Cities and Communities initiative. We thankfully acknowledge both agencies for their financial support.
Gating as a management strategy for controlling pedestrian flows