Improving pedestrian dynamics by controlling pedestrian flows

Nicholas Molyneaux, Riccardo Scarinci, Michel Bierlaire

TRANS-FORM final workshop

April 4th, 2019
Outline

1. Introduction

2. Flow separators

3. Results & case study
 - Proof-of-concept
 - Lausanne pedestrian underpass

4. Conclusion & next steps
Introduction

Improving pedestrian dynamics by controlling pedestrian flows
Context

Pedestrians suffer from congestion just as vehicles do:

• increased travel time,
• excessive density.

Which in turn can make you:

• be late for your job interview,
• despise traveling in public,
• miss your connecting train or plane,
• ...

Improving pedestrian dynamics by controlling pedestrian flows
Context

Higher capacity & faster PT services, to serve higher demand.
Context

Hub diversification (Lausanne, CH train station).
Motivation

What measures can be taken?

• Decrease pedestrian demand (counter productive!)
• Spread the load over time & space
• Influence pedestrian’s routes
• ...

Simulation is needed to address the complexity of the problem.

Integrate management strategies specific to pedestrian traffic within a Dynamic Traffic Management System (DTMS).
Framework

Pedestrian DTMS

Demand \mathcal{D}

Infrastructure \mathcal{I}

Pedestrian traffic $\mathcal{T}(D, I, C)$

LOADING

Activity scheduling
- activity location
- route choice

DEMAND

Measurement $\mathcal{M}(x_m, t)$

State evaluation
Reactive: $S_{[t-, t]}(\mathcal{M})$
Predictive: $S_{[t-, t+]}(\mathcal{M}, D) \ni \mathcal{T}_\mathcal{M}_{MPC}$

Control devices $C(x_c, t, \gamma)$

Traffic model $\mathcal{T}_\mathcal{M}(\eta, \gamma)$

Traffic controller policy $P(S, \eta)$ possibly with SBO

Improving pedestrian dynamics by controlling pedestrian flows
Strategies

What specific measures can be considered to impact dynamics:

- Adjustments to the PT schedule
- Control access to specific areas ⇒ gates
- Change link travel time ⇒ moving walkways
- Prevent counter flow ⇒ flow separators
- Attract pedestrians to specific locations
Existing strategies

Pedestrian management

- Little research on dynamic strategies.
- Some static measures (design) have been studied.

Road traffic management

- DTMS
- Ramp metering
- Perimeter control
- Variable message signs/ATIS
- Traffic lights
- ...
Proposed management strategy
Flow separators
Objective

Head-on-head “collisions” induce significant extra travel time.

⇓

Reduce this counter-flow to a minimum.

⇓

Dynamically allocate part of the available corridor width to each direction.
Figure: Schematic presentation of the devices used to separate the opposing flows. The inflow at each end determines the width available to each directed flow.
Width available for each direction is proportional to measured flows:

\[w_{AB}(t) = \begin{cases}
 w_{min}^{AB}, & \text{if } w \cdot \frac{q_{AB}}{q_{AB} + q_{BA}} \leq w_{AB}^{min} \\
 w_{max}^{AB}, & \text{if } w \cdot \frac{q_{AB}}{q_{AB} + q_{BA}} \geq w_{AB}^{max} \\
 w \cdot \frac{q_{AB}}{q_{AB} + q_{BA}}, & \text{otherwise}
\end{cases} \]
Results & case study

Improving pedestrian dynamics by controlling pedestrian flows
Case study setup

Proof-of-concept

• Single straight corridor
• Demand pattern: shifted sine-shaped flows

Pedestrian underpass

• Western pedestrian underpass in Lausanne’s station.
• Demand from measured trajectories (VisioSafe data, 2013).
Case study setup

• Discrete event simulator combined with a
disaggregate pedestrian motion model: NOMAD.

• Graph-based route choice (but no critical for now).
• Stochastic simulation → multiple runs.
Results & case study
Proof-of-concept
Infrastructure

Figure: Dynamic flow separator.
Demand

Figure: Demand pattern used to evaluate the flow separator.
Travel times

Figure: Median travel time distribution.
Travel time median - sensitivity to compliance

Figure: Travel time median as a function of demand.
Travel time variance - sensitivity to compliance

Figure: Travel time variance as a function of demand.

Improving pedestrian dynamics by controlling pedestrian flows

EPFL
Results & case study

Lausanne pedestrian underpass
Infrastructure
Infrastructure

Improving pedestrian dynamics by controlling pedestrian flows
Demand

Pedestrian demand, per 60 second intervals

Improving pedestrian dynamics by controlling pedestrian flows
Travel time

Change in median travel time per OD class

Figure: Journeys which don’t involve crossing the corridor
Travel time

Change in median travel time per OD class

Figure: Journeys which must cross the corridor
Conclusion & next steps

Improving pedestrian dynamics by controlling pedestrian flows
Conclusions

• Integration of one pedestrian control strategies in a DTMS.
• Flow separators significantly improves the travel time.
• Positive results in real-life case study.

Next steps

1. Investigate more complex control laws (improvement ?).
2. Model predictive control.
3. Simulation based optimization.
Thank you for your attention! Questions?

nicholas.molyneaux@epfl.ch
Acknowledgments

This research was performed as part of the TRANS-FORM (Smart transfers through unravelling urban form and travel flow dynamics) project funded by the Swiss Federal Office of Energy SFOE and Federal Office of Transport FOT grant agreement SI/501438-01 as part of JPI Urban Europe ERA-NET Cofound Smart Cities and Communities initiative. We thankfully acknowledge both agencies for their financial support.