The impact of counterflow on pedestrian walking times

Nicholas Molyneaux, Riccardo Scarinci, Michel Bierlaire

19th Swiss Transport Research Conference

May 17th, 2019
Outline

1. Introduction
 - Road DTMS
 - Pedestrian DTMS

2. Flow separators

3. Results & case study
 - Proof-of-concept
 - Lausanne pedestrian underpass

4. Conclusion & next steps
Introduction

The impact of counterflow on pedestrian walking times
Context

Pedestrians suffer from congestion just as vehicles do:

- increased travel time,
- excessive density.

Which in turn can make you:

- be late for your job interview,
- despise traveling in public,
- miss your connecting train or plane,
- ...
Context

Higher capacity & faster PT services, to serve higher demand.
Context

Hub diversification (Lausanne, CH train station).
Motivation

What measures can be taken?

• Decrease pedestrian demand (counter productive !)
• Spread the load over time & space
• Influence pedestrian’s routes
• ...

Simulation is needed to address the complexity of the problem.

Integrate management strategies specific to pedestrian traffic within a Dynamic Traffic Management System (DTMS).
Framework

Dynamic traffic management

Real time data
Infrastructure data
Historical data
Contextual data

State estimation
- Network loading
- Congestion
- Paths
- Behavioural choice

State prediction
- Network loading
- Congestion
- Paths
- Behavioural choice

KPI computation
- Density
- Travel time
- Transfer success
- etc

Control
- 100% compliance

Guidance
- ? % compliance

\[t = t + \Delta t \]
Introduction

The impact of counterflow on pedestrian walking times
Road DTMS: Traffic models

Microscopic

VISSIM (Fellendorf and Vortisch, 2010), car following model (Newell, 2002), CA (Nagel and Schreckenberg, 1992), etc.

Mesoscopic

GK (Hoogendoorn and Bovy, 2001), (Burghout et al., 2006), etc.

Macroscopic

LWR (Lighthill and Whitham, 1955), METANET (Papageorgiou et al., 2010), CTM (Daganzo, 1995), etc.

For a general overview see (van Wageningen-Kessels et al., 2015)
Road DTMS: Control strategies

Ramp metering
Papageorgiou et al. (1991); Hegyi et al. (2005)

Variable speed limits
Papageorgiou et al. (2008); Lee et al. (2006); Hegyi et al. (2005)

Signalized intersections
Little et al. (1981); Lo (1999)

Variable message signs
Wardman et al. (1997); Erke et al. (2007)

Perimeter control
Ramezani et al. (2015); Keyvan-Ekbatani et al. (2013)

The impact of counterflow on pedestrian walking times
Introduction

Pedestrian DTMS

The impact of counterflow on pedestrian walking times
Pedestrian DTMS: Traffic models

Microscopic
Campanella et al. (2014); Helbing and Molnár (1995), ...

Mesoscopic
Hänseler et al. (2017), ...

Macroscopic
Hänseler et al. (2014); Hoogendoorn et al. (2014), ...

For a general overview see (Duives et al., 2013)
Pedestrian DTMS: Control strategies

Flow regulation for light rail
Zhang et al. (2016)

Static design & offline
Hassan et al. (2014); Zhang et al. (2017), ...

Evacuation & special events
Zhang et al. (2016); Bauer et al. (2007), ...
Strategies

What specific measures can be considered to impact dynamics:

- Adjustments to the PT schedule
- Control access to specific areas ⇒ gates
- Change link travel time ⇒ moving walkways
- Prevent counter flow ⇒ flow separators
- Attract pedestrians to specific locations
Proposed management strategy
Flow separators
Objective

Head-on-head “collisions” induce significant extra travel time.

⇒

Reduce this counter-flow to a minimum.

⇒

Dynamically allocate part of the available corridor width to each direction.
Figure: Schematic presentation of the devices used to separate the opposing flows. The inflow at each end determines the width available to each directed flow.
Width available for each direction is proportional to measured flows:

\[w_{AB}(t) = \begin{cases}
 w_{AB}^{\text{min}}, & \text{if } w \cdot \frac{q_{AB}}{q_{AB} + q_{BA}} \leq w_{AB}^{\text{min}} \\
 w_{AB}^{\text{max}}, & \text{if } w \cdot \frac{q_{AB}}{q_{AB} + q_{BA}} \geq w_{AB}^{\text{max}} \\
 w \cdot \frac{q_{AB}}{q_{AB} + q_{BA}}, & \text{otherwise}
\end{cases} \] (1)
Results & case study
Case study setup

Proof-of-concept

- Single straight corridor
- Demand pattern: shifted sine-shaped flows

Pedestrian underpass

- Western pedestrian underpass in Lausanne’s station.
- Demand from measured trajectories (VisioSafe data, 2013).
Case study setup

- Discrete event simulator combined with a
disaggregate pedestrian motion model: NOMAD.

- Graph-based route choice (but no critical for now).
- Stochastic simulation \rightarrow multiple runs.
Results & case study

Proof-of-concept
Infrastructure

Figure: Dynamic flow separator.

The impact of counterflow on pedestrian walking times
Demand

Figure: Demand pattern used to evaluate the flow separator.

The impact of counterflow on pedestrian walking times
Travel times

Figure: Median travel time distribution.

The impact of counterflow on pedestrian walking times
Travel time median - sensitivity to compliance

Figure: Travel time median as a function of demand.
Travel time variance - sensitivity to compliance

Figure: Travel time variance as a function of demand.

The impact of counterflow on pedestrian walking times
Results & case study
Lausanne pedestrian underpass
Infrastructure

The impact of counterflow on pedestrian walking times
Infrastructure
Pedestrian demand, per 60 second intervals

The impact of counterflow on pedestrian walking times
Travel time

The impact of counterflow on pedestrian walking times
Walking speed

The impact of counterflow on pedestrian walking times
Conclusion & next steps
Conclusions

• Integration of one pedestrian control strategies in a DTMS.
• Flow separators significantly improves the travel time.
• Positive results in real-life case study.

Next steps

1. Investigate more complex control laws (improvement ?).
2. Model predictive control.
3. Simulation based optimization.
Thank you for your attention! Questions?
Acknowledgments

This research was performed as part of the TRANS-FORM (Smart transfers through unravelling urban form and travel flow dynamics) project funded by the Swiss Federal Office of Energy SFOE and Federal Office of Transport FOT grant agreement SI/501438-01 as part of JPI Urban Europe ERA-NET Cofound Smart Cities and Communities initiative. We thankfully acknowledge both agencies for their financial support.

