Reducing variability in passenger transfer times with two management strategies (inside transportation hubs)

Nicholas Molyneaux, Riccardo Scarinci, Michel Bierlaire

International Conference on Operations Research 2018

September 14th 2018
Outline

1. Introduction

2. Proposed management strategies
 - Gating
 - Flow separators

3. Results
 - Gating results
 - Flow separators results

4. Conclusion & next steps

Reducing variability in passenger transfer times with two management strategies
Reducing variability in passenger transfer times with two management strategies
Context

Pedestrians suffer from congestion just as vehicles do:

- increased travel time,
- excessive density.

Which in turn can make you:

- be late for your job interview,
- despise traveling in public,
- miss your connecting train or plane,
- ...

Reducing variability in passenger transfer times with two management strategies
Context

Higher capacity & faster PT services, to serve higher demand.
Context

Some of the services available at the Lausanne (CH) train station...

Reducing variability in passenger transfer times with two management strategies
Motivation

• Lack of comfort, hazardous situations, miss connections.

• How to prevent this? Some possibilities:
 – Decrease pedestrian demand (counter productive!)
 – Spread the load over time & space
 – Influence pedestrian’s routes
 – ...

• Simulation is needed to address the complexity of the problem

Goal: Integrate management strategies specific to pedestrian traffic within a Dynamic Traffic Management System (DTMS).
Framework

Reducing variability in passenger transfer times with two management strategies
Strategies

What specific measures can be considered to impact dynamics:

- Adjustments to the PT schedule
- Control access to specific areas ⇒ gates
- Change link travel time ⇒ moving walkways
- Prevent counter flow ⇒ flow separators
- Attract pedestrians to specific locations
Existing strategies

Pedestrian management
- Little research on dynamic strategies.
- Some static measures (design) have been studied.

Road traffic management
- Ramp metering
- Perimeter control
- Variable message signs
- Traffic lights
- ...
Proposed management strategies

Reducing variability in passenger transfer times with two management strategies
Proposed strategies

Gating
Prevent excess travel time in junctions.

Flow separators
Avoid counter flow in corridors.
Proposed management strategies

Gating
Objective

At corridor intersections, highly disordered flows takes place.

↓

Prevent too many individuals from crossing the intersection simultaneously (qualitative). → Prevent increase in travel time.

↓

What to measure? (quantitative)

• flow
• density
• speed
Density measurement

Some possibilities for measuring density:

Pedestrian accumulation
- snapshot
- sensitive to delimited area
- provides average values

Voronoi based
- snapshot
- expensive to compute
- provides individual values
- aggregation may be required

Edie’s definition
- average over time
- sensitive to delimited area
- provides average values
- strong physical interpretation
Density measurement

People with low densities are not problematic.

⇓

Count only “congested” pedestrians ⇒ need threshold.

The indicator used is the following:

For a density threshold $\bar{\rho}$,
for a given snapshot taken at time t,
count the number of individuals where $\rho_i(t) > \bar{\rho}$.

This gives a pedestrian-centric measurement (nearly) independent of any “zone”.

Reducing variability in passenger transfer times with two management strategies
Setup

The level-of-service must be measured and controlled inside area A.

Reducing variability in passenger transfer times with two management strategies
Control law

Parameters

- density threshold: $\bar{\rho}$
- uncontrolled flow: $f(0)$
- cut off value: $f(?) = 0$

Calibration based on:

- fundamental diagram
- distribution of individual densities
Proposed management strategies

Flow separators
Objective

Head-on-head “collisions” induce significant extra travel time.

\[\downarrow \]

Reduce this counter-flow to a minimum.

\[\downarrow \]

Dynamically allocate part of the available corridor width to each direction.
Setup

Figure: Schematic presentation of the devices used to separate the opposing flows. The inflow at each end determines the width available to each directed flow.

Reducing variability in passenger transfer times with two management strategies
Width available for each direction is proportional to flows:

\[
W_{AB} = \begin{cases}
 w \cdot f_{\text{min},AB}, & \text{if } \frac{\sum q_{\text{in},A}}{\sum q_{\text{in},A} + \sum q_{\text{in},B}} \leq f_{\text{min},AB} \\
 w \cdot f_{\text{max},AB}, & \text{if } \frac{\sum q_{\text{in},A}}{\sum q_{\text{in},A} + \sum q_{\text{in},B}} \geq f_{\text{max},AB} \\
 w \cdot \frac{\sum q_{\text{in},A}}{\sum q_{\text{in},A} + \sum q_{\text{in},B}}, & \text{otherwise}
\end{cases}
\]
Reducing variability in passenger transfer times with two management strategies
Case study setup

Gating

- crossed shaped junction
- demand pattern:
 - sinusoidal for two directions
 - uniform for other two

Flow separators

- straight corridor
- shifted sine-shaped flows
Case study setup

- Discrete event simulator combined with a
disaggregate pedestrian motion model: NOMAD.

- Graph-based route choice (but no critical for now).
- Stochastic simulation → multiple runs.
Results

Gating results
Travel times

(a) Without gating
(b) With gating

No significant difference in mean travel time: 21.04s VS 21.18s
Reduction in travel time variance: 5.16s → 4.41s (−14%)
- fewer people have long travel times
Individual density

(a) Without gating

(b) With gating

Decrease of

- mean density: $2.18\text{pax/m}^2 \rightarrow 1.82\text{pax/m}^2 \ (-16\%)$
- density variance: $1.22\text{pax/m}^2 \rightarrow 1.02\text{pax/m}^2 \ (-16\%)$
Average density

(a) Without gating

(b) With gating

Decrease of

- mean density: \(1.57 \text{ pax/m}^2 \rightarrow 1.42 \text{ pax/m}^2\) (\(-9.5\%\))
- density variance: \(0.93 \text{ pax/m}^2 \rightarrow 0.72 \text{ pax/m}^2\) (\(-22\%\))
Improvements

• less risk of gridlock.
• better level-of-service in the junction.

without increasing travel time.

Open questions:

• complex distributions: mean and variance meaningful?
• shape of the control law?
• parameter calibration?
• can travel time be improved?
Results
Flow separators results
Travel times

(a) Without flow separators

(b) With flow separators

Significant improvement in

- mean travel time: $37.86s \rightarrow 30.31s (-19\%)$
- travel time variance: $9.94s \rightarrow 3.39s (-66\%)$
Conclusion & next steps

Reducing variability in passenger transfer times with two management strategies
Conclusions

- Integration of two pedestrian control strategies in a DTMS.
- Gating improves the level-of-service and helps prevent gridlock.
- Flow separators significantly improves the travel time.

Next steps

1. Investigate more complex control laws (improvement ?).
2. Apply in more general context: train stations.
3. Model predictive control.
4. Simulation based optimization.
5. Dynamic control of accelerated moving walkways.
Thank you for your attention! Questions?

nicholas.molyneaux@epfl.ch
Acknowledgments

This research was performed as part of the TRANS-FORM (Smart transfers through unravelling urban form and travel flow dynamics) project funded by the Swiss Federal Office of Energy SFOE and Federal Office of Transport FOT grant agreement SI/501438-01 as part of JPI Urban Europe ERA-NET Cofound Smart Cities and Communities initiative. We thankfully acknowledge both agencies for their financial support.