A unified modeling and solution framework for stochastic routing problems

Iliya Markova, Michel Bierlairea, Jean-François Cordeaub, Sacha Varonec

a Transport and Mobility Laboratory
École Polytechnique Fédérale de Lausanne

b HEC Montréal and CIRRELT

c Haute École de Gestion de Genève, HES-SO

hEART 2017
Technion, September 14, 2017
1 Introduction

2 Capturing demand uncertainty

3 Optimization model

4 Methodology

5 Numerical experiments

6 Conclusion
Outline

1 Introduction

2 Capturing demand uncertainty

3 Optimization model

4 Methodology

5 Numerical experiments

6 Conclusion
Problem description

- Sensorized containers transmit level data to the server.
Introduction

Problem description

- Sensorized containers transmit level data to the server.
- Level data is used for demand forecasting and tour planning over a finite planning horizon.
Problem description

- Sensorized containers transmit level data to the server.
- Level data is used for demand forecasting and tour planning over a finite planning horizon.
- Vehicles perform the resulting tours.
Problem description

- Sensorized containers transmit level data to the server.
- Level data is used for demand forecasting and tour planning over a finite planning horizon.
- Vehicles perform the resulting tours.
- Solving this inventory routing problem involves
 - deciding which containers to visit each day
 - and optimizing the collection tours.
Introduction

Daily tour structure

Figure 1: Basic vehicle tour
Information uncertainty

- Information-wise, the problem is:
 - stochastic due to uncertain demands with distributional information
 - dynamic due to their periodic revelation
Information uncertainty

- Information-wise, the problem is:
 - *stochastic* due to uncertain demands with distributional information
 - *dynamic* due to their periodic revelation

- Thus, we can apply a *rolling horizon* approach:
 1. solve the problem for the planning horizon
 2. implement the first day decisions
 3. roll over and solve for updated levels and forecasts
Information uncertainty

- Information-wise, the problem is:
 - *stochastic* due to uncertain demands with distributional information
 - *dynamic* due to their periodic revelation

- Thus, we can apply a *rolling horizon* approach:
 1. solve the problem for the planning horizon
 2. implement the first day decisions
 3. roll over and solve for updated levels and forecasts

- *Solving the problem day by day in isolation leads to myopic decisions.*
Main approaches in the literature:

- stochastic programming, MDP (Pillac et al., 2013)
- approximate dynamic programming (Powell, 2011)
- robust optimization (Bertsimas and Sim, 2003, 2004)
- chance constraints (Gendreau et al., 2014)
Related literature and contributions

- Main approaches in the literature:
 - stochastic programming, MDP (Pillac et al., 2013)
 - approximate dynamic programming (Powell, 2011)
 - robust optimization (Bertsimas and Sim, 2003, 2004)
 - chance constraints (Gendreau et al., 2014)

- Characteristics of our approach:
 - unified approach with few distributional assumptions
 - explicit modeling of *undesirable events* and *recourse actions*
 - cost-oriented with priced risk
 - applicable to rich real-world problems
Outline

1 Introduction

2 Capturing demand uncertainty

3 Optimization model

4 Methodology

5 Numerical experiments

6 Conclusion
Demand forecasting

Sets

- \mathcal{K}: set of vehicles
- \mathcal{T}: set of days in the planning horizon
- \mathcal{P}: set of containers
Demand forecasting

Sets

- \mathcal{K}: set of vehicles
- \mathcal{T}: set of days in the planning horizon
- \mathcal{P}: set of containers

Forecasting model

- stochastic non-stationary demand ρ_{it} for container $i \in \mathcal{P}$ on day $t \in \mathcal{T}$:

$$\rho_{it} = \mathbb{E}(\rho_{it}) + \varepsilon_{it} \quad (1)$$

- combine ε_{it} in a vector:

$$\varepsilon = (\varepsilon_{11}, \ldots, \varepsilon_{1|\mathcal{T}|}, \varepsilon_{21}, \ldots, \varepsilon_{|\mathcal{P}||\mathcal{T}|}) \quad (2)$$

- let $\varepsilon \sim \Phi$ with $\text{var}(\varepsilon) = K$ that can be simulated
- use any forecasting model that provides $\mathbb{E}(\rho_{it})$ and Φ
Inventory policy

Context

- Order-Up-to (OU) level policy \cite{Bertazzi2002}
- Maximum Level (ML) policy \cite{Archetti2011}
Inventory policy

Context
- Order-Up-to (OU) level policy (Bertazzi et al., 2002)
- Maximum Level (ML) policy (Archetti et al., 2011)

Discretized ML policy
- for tractable pre-processing of stochastic information
- Λ_{it}: inventory after collection of container i on day t

Figure 2: Discretized ML policy example
Capturing demand uncertainty

Undesirable events

Container overflows

- $\sigma_{it} = 1$ for overflow of container i on day t, 0 otherwise
- entails an overflow cost
- *recourse*: emergency collection with a cost
Undesirable events

Container overflows
- $\sigma_{it} = 1$ for overflow of container i on day t, 0 otherwise
- entails an overflow cost
- *recourse*: emergency collection with a cost

Route failures
- inability to complete a depot-to-dump or dump-to-dump trip S
- due to insufficient vehicle capacity
- *recourse*: detour to the nearest dump with a cost
Overflow probabilities

- Overflow probability of container i on day t:
 \[
 p_{it}^{DP} = P(\sigma_{it} = 1 \mid \Lambda_{im} : m = \max(0, g < t : \exists k \in K : y_{ikg} = 1))
 \]
 \((3) \)

 where:
 - y_{ikg} 1 if vehicle k visits container i on day g, 0 otherwise
Overflow probabilities

- Overflow probability of container i on day t:
 \[
 p_{it}^{DP} = \mathbb{P}(\sigma_{it} = 1 \mid \Lambda_{im}: m = \max(0, g < t: \exists k \in K: y_{ikg} = 1))
 \]
 where:
 - y_{ikg}: 1 if vehicle k visits container i on day g, 0 otherwise

- For a discretized ML policy, expression (3) can be pre-computed for $\varepsilon \sim \Phi$ with $\text{var}(\varepsilon) = K$ using simulation.
Overflow probabilities

- Overflow probability of container i on day t:

$$p_{it}^{DP} = P(\sigma_{it} = 1 | \Lambda_{im}: m = \max(0, g < t: \exists k \in K: y_{ikg} = 1))$$

(3)

where:
- y_{ikg} 1 if vehicle k visits container i on day g, 0 otherwise

- For a discretized ML policy, expression (3) can be **pre-computed** for $\varepsilon \sim \Phi$ with $\text{var}(\varepsilon) = K$ using **simulation**.

- The complexity is linear in the number of discrete levels.
Route failure probabilities

Route failure probability of trip S performed by vehicle k:

$$p_{S,k}^{RF} = \mathbb{P}(\Gamma_S > \Omega_k)$$ \hspace{1cm} (4)

where:
- Γ_S \hspace{0.5cm} collection quantity in trip S
- Ω_k \hspace{0.5cm} capacity of vehicle k
Route failure probability of trip S performed by vehicle k:

$$p_{S,k}^{RF} = \mathbb{P}(\Gamma_S > \Omega_k) \quad (4)$$

where:
- Γ_S collection quantity in trip S
- Ω_k capacity of vehicle k

Can be partially pre-processed for any iid error terms ε_{it}.
Route failure probabilities

- Route failure probability of trip S performed by vehicle k:

$$p_{S,k}^{RF} = \mathbb{P}(\Gamma_S > \Omega_k)$$ \hspace{1cm} (4)

where:
- Γ_S collection quantity in trip S
- Ω_k capacity of vehicle k

- Can be partially pre-processed for any iid error terms ε_{it}.

- Use simulation to derive an ECDF of the error of Γ_S, $\forall S$, the latter being sums of ε_{it}.
Route failure probabilities

- Route failure probability of trip \(S \) performed by vehicle \(k \):
 \[
p^{\text{RF}}_{S,k} = \mathbb{P}(\Gamma_S > \Omega_k)
 \]
 (4)

 where:
 - \(\Gamma_S \) collection quantity in trip \(S \)
 - \(\Omega_k \) capacity of vehicle \(k \)

- Can be partially pre-processed for any iid error terms \(\varepsilon_{it} \).

- Use simulation to derive an ECDF of the error of \(\Gamma_S \), \(\forall S \), the latter being sums of \(\varepsilon_{it} \).

- Use the ECDFs at runtime to approximate route failure probabilities.
Outline

1. Introduction
2. Capturing demand uncertainty
3. Optimization model
4. Methodology
5. Numerical experiments
6. Conclusion
Principal cost components, I

Routing cost

- daily deployment cost
- travel distance related cost
- travel, service and waiting time related cost
Expected overflow and emergency collection cost

\[\sum_{t \in T \cup T^+} \sum_{i \in P} \left(\chi + \zeta - \zeta \sum_{k \in K} y_{ik} \right) p_{it}^{DP} \quad (5) \]

where:

- \(\chi \) overflow cost
- \(\zeta \) emergency collection cost
Expected route failure cost

\[
\sum_{t \in T \setminus 0} \sum_{k \in K} \sum_{S \in \mathcal{S}_{kt}} \psi C_S p_{S,k}^{RF}
\]

(6)

where:
- \(\mathcal{S}_{kt} \) set of trips performed by vehicle \(k \) on day \(t \)
- \(C_S \) dump detour cost for trip \(S \)
- \(\psi \) route failure cost multiplier
Objective function

Components:
- routing cost
- expected overflow and emergency collection cost
- expected route failure cost
- various deterministic cost components (inventory holding, number of visits, workload balancing)
Objective function

Components:
- routing cost
- expected overflow and emergency collection cost
- expected route failure cost
- various deterministic cost components (inventory holding, number of visits, workload balancing)

Overestimates the real cost:
- due to modeling simplifications
- for tractability reasons
- do-nothing vs. optimal reaction policy
Deterministic constraints

- accessibility restrictions
- vehicle capacity and dump visits
- time windows
- maximum tour duration
- periodicities and service choice
- inventory tracking and container capacity
- inventory policy definition
- etc...
Probabilistic constraints

- Capture stochasticity in the constraints instead of the objective.
Probabilistic constraints

- Capture stochasticity in the constraints instead of the objective.
- Maximum overflow probability, for a constant $\gamma^{DP} \in (0, 1]$:
 \[p^{DP}_{it} \leq \gamma^{DP} \quad \forall t \in T, i \in P \]
 (7)
- Maximum route failure probability, for a constant $\gamma^{RF} \in (0, 1]$:
 \[p^{RF}_{S,k} \leq \gamma^{RF} \quad \forall t \in T, k \in K, S \in S_{kt} \]
 (8)
Applications

Stochastic demand problems

- vehicle routing
- waste collection inventory routing
- supermarket delivery routing
- fuel delivery routing
- home health care routing
- maritime inventory routing
Applications

Stochastic demand problems

- vehicle routing
- waste collection inventory routing
- supermarket delivery routing
- fuel delivery routing
- home health care routing
- maritime inventory routing

Probability-based routing problems

- e.g. facility maintenance
- facility breakdown probability grows with number of days since last visit
Outline

1. Introduction
2. Capturing demand uncertainty
3. Optimization model
4. Methodology
5. Numerical experiments
6. Conclusion
Adaptive large neighborhood search

- State-of-the-art meta-heuristic (Ropke and Pisinger, 2006a,b).
Adaptive large neighborhood search

- State-of-the-art meta-heuristic (Ropke and Pisinger, 2006a,b).
- Rich operator pools:
 - diversification vs. intensification
Adaptive large neighborhood search

- State-of-the-art meta-heuristic (Ropke and Pisinger, 2006a,b).
- Rich operator pools:
 - diversification vs. intensification
- Admits intermediate infeasibilities.
Adaptive large neighborhood search

- State-of-the-art meta-heuristic (Ropke and Pisinger, 2006a,b).
- Rich operator pools:
 - diversification vs. intensification
- Admits intermediate infeasibilities.
- Performance:
 - competitive on benchmarks (Archetti et al., 2007)
 - stable: 0-3% between best and worst over 10 runs
 - fast: 10-15 min. per instance; operational speed
Outline

1. Introduction
2. Capturing demand uncertainty
3. Optimization model
4. Methodology
5. Numerical experiments
6. Conclusion
Waste collection case study

- Waste collection IRP instances:
 - 63 realistic instances from Geneva, Switzerland
 - rich routing features
Waste collection case study

- Waste collection IRP instances:
 - 63 realistic instances from Geneva, Switzerland
 - rich routing features

- Compare probabilistic policies varying the:
 - Emergency Collection Cost \((ECC)\)
 - Route Failure Cost Multiplier \((RFCM)\)

Simulate undesirable events on final solution.
Waste collection case study

- Waste collection IRP instances:
 - 63 realistic instances from Geneva, Switzerland
 - rich routing features

- Compare probabilistic policies varying the:
 - Emergency Collection Cost (ECC)
 - Route Failure Cost Multiplier (RFCM)

- Against buffer capacity deterministic policies varying the:
 - Container Effective Capacity (CEC)
 - Truck Effective Capacity (TEC)
Waste collection case study

- Waste collection IRP instances:
 - 63 realistic instances from Geneva, Switzerland
 - rich routing features

- Compare probabilistic policies varying the:
 - Emergency Collection Cost \((ECC) \)
 - Route Failure Cost Multiplier \((RFCM) \)

- Against buffer capacity deterministic policies varying the:
 - Container Effective Capacity \((CEC) \)
 - Truck Effective Capacity \((TEC) \)

- Simulate undesirable events on final solution.
Waste collection: Service area

Figure 3: Geneva service area
Waste collection: Policy comparison

Figure 4: Routing cost and overflows for probabilistic and deterministic policies

(a) Routing Cost

(b) Overflows
Waste collection: Rolling horizon

- **Static Deterministic IRP (SD-IRP):**
 - true demands; solve for planning horizon
Waste collection: Rolling horizon

- **Static Deterministic IRP (SD-IRP):**
 - true demands; solve for planning horizon

- **Static Stochastic IRP (SS-IRP):**
 - forecast demands; solve for planning horizon

Hypothesize:

\[z_{\text{SS-IRP}} \geq z_{\text{DSIRP}} \geq z_{\text{SD-IRP}} \]
Waste collection: Rolling horizon

- Static Deterministic IRP \((SD-IRP)\):
 - true demands; solve for planning horizon

- Static Stochastic IRP \((SS-IRP)\):
 - forecast demands; solve for planning horizon

- Dynamic and Stochastic IRP \((DSIRP)\):
 - forecast demands; rolling horizon approach over planning horizon
Numerical experiments

Waste collection: Rolling horizon

- Static Deterministic IRP (SD-IRP):
 - true demands; solve for planning horizon

- Static Stochastic IRP (SS-IRP):
 - forecast demands; solve for planning horizon

- Dynamic and Stochastic IRP (DSIRP):
 - forecast demands; rolling horizon approach over planning horizon

Hypothesize:
- \(z(\text{SS-IRP}) \geq z(\text{DSIRP}) \geq z(\text{SD-IRP}) \)
Waste collection: Rolling horizon

Figure 5: Analysis of rolling horizon bounds

(a) $z(\text{DSIRP}) \geq z(\text{SD-IRP})$
(b) $z(\text{SS-IRP}) \geq z(\text{DSIRP})$
The rolling horizon approach is beneficial.
Waste collection: Impact of ECDFs

- Numerical approximation vs. ECDFs for route failure probabilities:
 - 100 bins: squared error of 10^{-6}
 - 1000 bins: squared error of 10^{-7}
Waste collection: Impact of ECDFs

- Numerical approximation vs. ECDFs for route failure probabilities:
 - 100 bins: squared error of 10^{-6}
 - 1000 bins: squared error of 10^{-7}

Figure 6: Runtimes of different configurations
Waste collection: Objective overestimation

Figure 7: Objective function’s overestimation of the real cost for ECC = 100 CHF, RFCM = 1

(a) Do-Nothing Reaction Policy

(b) Optimal Reaction Policy Upper Bound
Numerical experiments

Facility maintenance case study

Instances:

- 93 instances derived partially from real data
- rich routing features
Numerical experiments

Facility maintenance case study

- **Instances:**
 - 93 instances derived partially from real data
 - rich routing features

- **Compare probabilistic policies varying the:**
 - Emergency Repair Cost (*ERC*)
 - maximum breakdown probability (*gamma*)
Facility maintenance case study

- **Instances:**
 - 93 instances derived partially from real data
 - rich routing features

- **Compare probabilistic policies varying the:**
 - Emergency Repair Cost (ERC)
 - maximum breakdown probability (γ)

- **Against deterministic policies varying the:**
 - minimum number of required visits (ν)
Facility maintenance case study

- **Instances:**
 - 93 instances derived partially from real data
 - rich routing features

- **Compare probabilistic policies varying the:**
 - Emergency Repair Cost \((\text{ERC})\)
 - maximum breakdown probability \((\gamma)\)

- **Against deterministic policies varying the:**
 - minimum number of required visits \((\nu)\)

- **Simulate undesirable events on final solution.**
Figure 8: Routing cost and breakdowns for probabilistic objective vs. probabilistic constraints model

(a) Routing Cost

(b) Breakdowns

Policies

Percentiles 75th 90th 95th 99th
Facility maintenance: Policy comparison

Figure 9: Probabilistic vs. deterministic policies

(a) Breakdowns at 99th percentile

(b) Routing Cost

Policy
- Deterministic
- Probabilistic
Outline

1 Introduction
2 Capturing demand uncertainty
3 Optimization model
4 Methodology
5 Numerical experiments
6 Conclusion
Conclusions

- Applicable to various rich practically relevant problems.
Conclusions

- Applicable to various rich practically relevant problems.
- Explicit modeling of undesirable events, recourse actions, and costs.
Conclusions

- Applicable to various rich practically relevant problems.
- Explicit modeling of undesirable events, recourse actions, and costs.
- Few distributional assumptions.
Conclusions

- Applicable to various rich practically relevant problems.
- Explicit modeling of undesirable events, recourse actions, and costs.
- Few distributional assumptions.
- Negligible deviation of modeled from real cost.
Conclusions

- Applicable to various rich practically relevant problems.
- Explicit modeling of undesirable events, recourse actions, and costs.
- Few distributional assumptions.
- Negligible deviation of modeled from real cost.
- Efficient and competitive solution methodology.
Conclusions

- Applicable to various rich practically relevant problems.
- Explicit modeling of undesirable events, recourse actions, and costs.
- Few distributional assumptions.
- Negligible deviation of modeled from real cost.
- Efficient and competitive solution methodology.
- Tractability through the ability to pre-process.
Conclusions

- Applicable to various rich practically relevant problems.
- Explicit modeling of undesirable events, recourse actions, and costs.
- Few distributional assumptions.
- Negligible deviation of modeled from real cost.
- Efficient and competitive solution methodology.
- Tractability through the ability to pre-process.
- Clear-cut superiority of stochastic (rolling horizon) approach.
Future research

- More tests on real-world benchmarks.
Future research

- More tests on real-world benchmarks.
- Additional rich routing features.
Future research

- More tests on real-world benchmarks.
- Additional rich routing features.
- Additional stochastic parameters.
Future research

- More tests on real-world benchmarks.
- Additional rich routing features.
- Additional stochastic parameters.
- Online re-optimization.
Future research

- More tests on real-world benchmarks.
- Additional rich routing features.
- Additional stochastic parameters.
- Online re-optimization.
- Richer objective: modeling realism vs. tractability.
Future research

- More tests on real-world benchmarks.
- Additional rich routing features.
- Additional stochastic parameters.
- Online re-optimization.
- Richer objective: modeling realism vs. tractability.
- Column generation for lower bounds.
Conclusion

Thank you

hEART 2017, Technion, Haifa, Israel

A unified modeling and solution framework for stochastic routing problems
Iliya Markov, Michel Bierlaire, Jean-François Cordeau, Sacha Varone

Iliya Markov
Transport and Mobility Laboratory
École Polytechnique Fédérale de Lausanne
iliya.markov@epfl.ch

Figure 10: Container state probability tree