Optimization of Discrete Choice Models

Gael Lederrey, Virginie Lurkin and Michel Bierlaire

Work in progress

Optimization of Discrete Choice Models?

DCMs Softwares

• Larch (Newman *et al.*, 2018)

MNLogit (statsmodel, Python)

Biogeme (Bierlaire, 2003)

Motivation

What can we do?

- Avoid using more data
 (Do we really need more data?)
- 2. Use more powerful computers (Do you know about Moore's law?)
- 3. Stop using DCMs and use ML (Basically, it's the same thing, no?)
- 4. Actually do something about DCMs

Where to get inspiration?

- Machine Learning is the obvious choice!
 - o Emerging since 1950's
 - Lot's of work on Optimization thanks to Neural Networks
 - They make use of data (data-driven)=> they know how to deal with data!

ML is actually "close" to DCMs

DCMs

V.S.

ML

Model-driven

Data-driven

Main goal:
Understand behavior

Main goal:

Prediction

Can also predict

Can also help to understand behavior

Likelihood as objective function

Likelihood (possible) as objective function

Optimization is very important!

Optimization is very important!

One fundamental difference

Optimization of ML - The Basics

GD

(Cauchy, 1847)

Specificities:

Gradient computed on **all** the data

Update step:

$$heta = heta - lpha \cdot
abla_{ heta} f(heta; x)$$

Where

 θ : Parameters

 α : Step size

f: Function, $f\in C^1(\mathbb{R}^{\mathrm{n}})$

x: Data, $x\in\mathbb{R}^n$

SGD

(???, 1940's)

Specificities:

Gradient computed on only one data

Update step:

$$heta = heta - lpha \cdot
abla_{ heta} f(heta; x_i)$$

Where

 θ : Parameters

lpha: Step size

f : Function, $f \in C^1(\mathbb{R}^{\mathrm{n}})$

x: Data, $x\in\mathbb{R}^n$

mbSGD

(???, 1940's)

Specificities:

Gradient computed on

a batch of data

Update step:

$$heta = heta - lpha \cdot
abla_{ heta} f(heta; x_{\sigma(k)})$$

Where

 θ : Parameters

 α : Step size

f: Function, $f\in C^1(\mathbb{R}^{\mathrm{n}})$

 $x\colon$ Data, $x\in\mathbb{R}^n$

 $\sigma(k)$: Choice of k indices

First-Order vs Second-Order

Gradient is pretty cheap to compute

$$abla_{ heta}f(heta;x)\in\mathbb{R}^d$$

Computation of Hessian is difficult/impossible

Recently, more work on quasi-Newton methods.

What am I doing?

Newton Method

Update step:

$$\mathbf{x}_{n+1} = \mathbf{x}_n - lpha[
abla^2 f(\mathbf{x}_n)]^{-1}
abla f(\mathbf{x}_n)$$

Use Conjugate Gradient to find the step direction

$$abla^2 f(\mathbf{x}_n) \Delta \mathbf{x} = -
abla f(\mathbf{x}_n)$$

- Use Line Search for proper step size
 - Wolfe 1, Wolfe 2, Armijo, etc.

Trust Region

- ullet Define a trust region around current point: ${f x}_n$
- ullet Use Taylor to approximate $f(\mathbf{x}_n)$

$$f(\mathbf{x}_n + \Delta \mathbf{x}) = f(\mathbf{x}_n) +
abla f(\mathbf{x}_n) \Delta \mathbf{x} + rac{1}{2}
abla^2 f(\mathbf{x}_n) (\Delta \mathbf{x})^2$$

- ullet Find $\Delta_{\mathbf{X}}$ that minimize the Taylor approx.
- Based on $\Delta \mathbf{x}$, decide to:
 - Augment the size of the TR
 - Reduce the size of the TR
 - o Do a step or try again

0 ...

Models and datasets

Swissmetro (~10k) and MNL

Swissmetro (~10k) and Nested Logit Model

Bike Sharing (~16k) and Logistic Regression

16

Newton Method and Trust Region

Introducing Stochasticity

No "Full" gradient or Hessian

Choose a "final" batch size

Sample the data without replacement

Is Stochasticity a good thing?

Adaptive Batch Size (ABS)

ABS at work!

Comparison

Wrap-up

		Bike Sharing	MNL	Nested
Newton Method	Basic			
	Stocha			
	ABS			
		Bike Sharing	MNL	Nested
Trust Region	Basic			
	Stocha			
	ABS			

Conclusion

Basic stochastic algorithms seem to struggle

A lot of work is needed on the batch size

• **But, Promising early results!**

Future work

- Testing ABS on
 - More models: Cross Nested, Mixed Logit, etc.
 - More data: RP & SP data from 2015 microsensus

- Continue developing ideas about
 - Different batch size update
 - o Quasi Newton methods?
- Candidacy!

Thank you!