Synthetic population generation using GANs and expert knowledge

Gael Lederrey, Tim Hillel, and Michel Bierlaire

AUM2020: Online Global Workshop
28.01.2021
Outline

● Motivation

● State-of-the-art

● GANs

● Research perspective

● DATGAN

● Conclusion
Motivation

- Agent-based simulation relies on accurate representations of a population.

- **But:** infeasible to obtain detailed socio-economic data for full population - (privacy/security/cost!)

- => Agent-based simulations typically make use of synthetic population.
State-of-the-art for population synthesis

- 2010’s: Iterative Proportional Fitting (IPF)
 - Beckman et al., 1996: First paper using IPF
 - Auld et al., 2009: Improvements on IPF

- 2010-2015: Monte Carlo Simulations
 - Farooq et al., 2013: MCMC simulation with Gibbs sampling
 - Casati et al., 2015: Hierarchical MCMC

- 2015-2019: Bayesian Networks
 - Sun and Erath, 2015: First to propose Bayesian Networks
 - Zhang et al., 2018: Bayesian Network as Social Network

- 2019-???: Deep Learning
 - Borysov et al., 2019: First use of a Variational AutoEncoder
 - Badu-Marfo et al., 2020: Composite Travel Generative Adversarial Network (CTGAN)
Data generation in Deep Learning

- 2014: Generative Adversarial Networks (GANs)
 - Goodfellow et al., 2014

- 2014->2021: Many iterations of GANs for images

- 2018: GANs for tabular data are proposed
 - Xu et al., 2018 & Park et al., 2018

- Limited work on data representativity and...
Generative Adversarial Networks (GANs)

- Idea: Train 2 NNs “simultaneously”, one to generate images data and one to discriminate between fake and real.

- Basic architecture:
Generative Adversarial Networks (GANs)

Generator
- **Change of architecture**: 30
 - The Generator can change its architecture to be faster and more efficient.
- **Fool**: 60
 - Put the opponent in a state of confusion and gains points for the loss function.

Discriminator
- **Train with real data**: 30
 - This technique gives a bonus of +10 to the next “Make a correct guess” attack
- **Make a correct guess**: 50
 - Loose its confusion status and gains points for the loss function.
GANs - Early models

- Standard architectures for both NNs.
 - ANN in both cases

- First improvements made on
 - Loss function (Wasserstein GAN, Cramer GAN)
 - Training stability (WGAN-GP)
 - Coverage and Representativity (MMD-GAN)

- Successful results with images!
Early models and tabular data

- Standard GAN trained on 2D data => bad results!

Mode collapse

Instabilities

Best result
What is “representativity” in data?

- Concept of representativity = generate new data that reflect the original distribution.
- ⚠️ different from generating data that fool a discriminator!
Research perspective

- Two parallel research directions:

 Improvement of population synthesis
 - Develop new robust ML models for synthetic population generation
 => Current SoR: TGAN

 Representativeness assessment
 - Develop new statistical method to better assess the model performance
 Current SoR: SRMSE
 Mueller and Axhausen, 2011
TGAN and flaws

- TGAN stands for Table GAN
 - Xu et al., 2018

- Main idea:
 - Architecture for Generator = sequence of LSTM cells

\[h_t: \text{output} \]
\[C_t: \text{cell state} \]
\[X_t: \text{input} \]
TGAN and flaws

- TGAN stands for Table GAN
 - Xu et al., 2018

- Main idea:
 - Architecture for Generator = sequence of LSTM cells

- Flaws:
 - No “specific” relations between the variables in the dataset
 - Selection of discrete values using arg max on predicted probabilities
DATGAN

● TGAN

Day of the week → Driving license → Age → Mode choice → Work status

● DATGAN (Directed Acyclic TGAN)

Day of the week → Work status → Mode choice → Driving license → Age
Current work-in-progress

● DATGAN is ~ trainable

● Problem: “How to add multiple inputs to an LSTM cell”

● Possible solutions?:
 ○ Concatenate inputs and cell states (⚠ size)
 ○ Use additional DeepLayers to reduce size (⚠ training)
 ○ Transform the current LSTM cell to accept multiple inputs

● Investigation is ongoing - first analytical results due ASAP.
Conclusion and future work

- GANs are current state-of-the-art technique for population synthesis (outperforms previous approaches)

- Proposed directed acyclic graph structure addresses existing limitations of TGAN

- Future work:
 - DATGAN: Finalise implementation
 - Validation: Define more robust metrics for assessing aggregate representativity
Thank you!

Questions?

email: gael.lederrey@epfl.ch