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Introduction

Motivation i

Crash count data modelsww�
Model-based rankings of hazardous sites, and

predict crash counts at hot spots

Traditional crash count data models:
Poisson log-normal or negative binomial regression models.
Account for spatial correlation between spatial units.
Linear-in-parameter link function.
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Introduction

Motivation ii

Linear-in-parameters link function is suitable for interpretability, but predictive
performance is of paramount importance.

Exhaustive specification searches are precluded by complex model structures
arising from the need to account for unobserved heterogeneity and spatial
correlations.

Modern machine learning (ML) methods automate the specification search:
Kernel-based regression (Thakali, 2016).

Neural networks (Chang, 2005; Huang et al., 2016).

Support vector machine (Dong et al., 2015; Li et al., 2008).

Deep learning architectures (Cai et al., 2019; Dong et al., 2018).
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Introduction

Research gaps

Limitations of modern ML methods:
Do not account for spatial correlations between observations.

Do not o�er straightforward ways to construct confidence or credible intervals.

Fully nonparametric, with no easy way to include interpretable part in link function.

Unfair comparison – benchmark performance against simplistic parametric models.
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Introduction

Research objectives

A negative binomial regression model with a semi-parametric link function, which:
Specifies non-parametric part of the link function using Bayesian additive
regression trees (BART)

Induces endogenous partition of predictor space.

Retains interpretability by allowing linear link component.

Can account for random parameters and spatial correlations.

Is embedded in Bayesian inferential framework.
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Introduction

Bayesian additive regression trees (BART)

BART specifies the regression function as sum of trees.

An example tree of BART:
Splitting rules at decision nodes are x1 < 0.7 and x2 < 0.4.

Terminal leaf nodes are Mj = {µj1, µj2, µj3}.
Induces three partitions Pjt and accounts for interaction.

g(X; Tj,Mj) = µjt if X = {x1, x2} ∈ Pjt ∀t ∈ {1, 2, 3}.
Tree is a step function and BART is sum of step functions.

BART endogenously partitions the predictor space,
accounts for nonlinearities, main and interaction e�ects
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Model formulation

Model formulation

Negative Binomial (NB) likelihood

yi ∼ NB(r,pi), pi =
exp(ψi)

1 + exp(ψi)
, i = 1, . . . ,N

Semi-parametric link function specification with sum-of-trees

ψi = Gi(Xi; T,M) + F>i γ + φi, Gi(Xi; T,M) =
m∑
j=1

gi(Xi; Tj,Mj), i = 1, . . . ,N

Matrix exponential spatial specification (MESS; LeSage and Pace, 2007) of spatial
dependence

Sφ = exp(τW)φ = ε, ε ∼ Normal(0, σ2IN)
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Model formulation

Pólya-Gamma data augmentation (Polson et al., 2013)

Issue
Negative binomial distribution does not have a conjugate prior.
Thus, the conditional distributions of the link function parameters do not
constitute known distributions.

Remedy
Introduce Pólya-Gamma-distributed auxiliary variables.
Conditional on the auxiliary variable, the likelihood of observed counts is
translated into a heteroskedastic Gaussian likelihood.
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Case study

Case study

Test model on crash frequency data from 1,158 contiguous road segments of 11
highway facilities in the Greater Houston metropolitan area.
Observation period covers 4 consecutive calendar years in the period from 2007 to
2010.
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Case study

Sample description (1,158 road segments; Houston, USA)
Predictor space 2007 2008 2009 2010

I I (random) II Mean Std. Mean Std. Mean Std. Mean Std.

Crash count N.A. N.A. N.A. 19.15 25.76 15.17 20.60 14.17 19.21 17.44 23.68
Interstate highway (dummy) 3 7 3 0.45 0.50 0.45 0.50 0.45 0.50 0.45 0.50
Exurban area (dummy) 3 7 3 0.27 0.45 0.27 0.45 0.27 0.45 0.20 0.40
Asphalt pavement (dummy) 3 7 3 0.17 0.38 0.17 0.37 0.14 0.35 0.12 0.33
Asphalt shoulder (dummy) 3 7 3 0.60 0.49 0.58 0.49 0.58 0.49 0.57 0.50
Total road width 7 7 3 54.51 15.17 55.00 15.27 55.97 15.62 56.27 15.43
Left shoulder width [ft] 7 7 3 8.61 2.78 8.66 2.78 8.36 3.33 8.52 3.23
Right shoulder width [ft] 7 7 3 9.02 2.31 9.06 2.30 9.75 2.07 9.60 2.26
Left shoulder width< 10 ft 3 3 7 0.53 0.50 0.53 0.50 0.52 0.50 0.51 0.50
Right shoulder width< 10 ft 3 3 7 0.44 0.50 0.44 0.50 0.25 0.43 0.27 0.45
Road overall quality index 7 7 3 35.40 20.11 36.66 18.08 36.03 19.32 37.89 17.92
Road overall quality index ≤ 45 3 7 7 0.50 0.50 0.50 0.50 0.51 0.50 0.56 0.50
Road comfort index 7 7 3 34.48 5.70 34.95 5.57 34.57 5.78 35.13 5.57
Road structural index 7 7 3 41.80 14.95 42.52 13.71 42.69 13.97 43.56 12.76
Road surface index 7 7 3 0.61 1.27 0.62 1.28 1.82 1.47 1.06 1.54
Speed limit [MPH] 3 3 3 61.17 5.05 61.25 4.92 61.35 4.85 61.37 4.79
No. of through lanes 7 7 3 3.13 0.99 3.16 1.01 3.15 1.03 3.18 1.01
Road profile score (avg.) 3 7 7 117.45 35.76 114.40 34.47 116.89 36.10 113.11 34.19
Road profile score (left) 7 7 3 117.15 35.11 107.67 34.38 114.86 34.51 112.04 32.91
Road profile score (right) 7 7 3 117.88 37.55 121.32 37.50 119.06 38.67 114.32 36.44
Annual average daily tra�c (AADT) 7 7 3 1.52 0.84 1.54 0.85 1.56 0.86 1.50 0.85
Logarithm of AADT per lane 3 7 7 9.46 0.61 9.47 0.61 9.48 0.61 9.45 0.61
Truck tra�c percentage 3 7 3 10.49 6.73 10.36 6.47 10.69 6.57 10.79 6.36
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Case study

Model specifications

Restricted predictor space (I) with some continuous predictors converted to
dummy variables:

NB-BART-I: proposed NB regression model with spatial error terms and BART-based
link function.
NB-fixed: NB regression model with spatial error terms, linear-in-parameters link
function, and all fixed parameters.
NB-random: NB regression model with spatial error terms, linear-in-parameters link
function, and combination of fixed and random parameters.

Unrestricted predictors space (II) with all predictors in their original form:
NB-BART-II
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Case study

Assessment of model fit

Log point-wise predictive density (LPPD; Gelman et al., 2014)

LPPD =
N∑
i=1

log

(∫
P(yi|θi)p(θi|y)dθi

)
,

A larger value of LPPD indicates superior goodness of fit.

Root mean square error (RMSE)

RMSE =

√√√√ 1
N

N∑
i=1

(ŷi − yi)
2.
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Case study

Goodness of fit

2007 2008 2009 2010
Method LPPD RMSE LPPD RMSE LPPD RMSE LPPD RMSE

NB-fixed -3784.34 14.74 -3545.04 11.66 -3545.89 11.73 -3627.46 12.80
NB-random -3726.01 13.77 -3483.54 10.85 -3478.76 10.93 -3564.49 12.03
NB-BART-I -3734.88 13.82 -3490.67 10.69 -3510.13 10.97 -3558.87 11.46
NB-BART-II -3664.14 12.15 -3437.68 9.84 -3407.94 9.39 -3510.43 10.53

Note: LPPD = log pointwise predictive density; RMSE = root mean square error. For each obser-
vation period and goodness fit measures, the best-performing method is in bold font.
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Case study

Assessment of site ranking ability

We rank sites by their posterior mean probability to belong to the top 5% most
hazardous sites in the network.

Important notations:
Hα,t: a set of hazardous sites in time period t at risk level α (i.e., top 5%).
Rh,t: the rank of site h in period t.
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Case study

Site ranking consistency tests (Cheng and Washington, 2008)

Site consistency test
Average of the predicted accident counts ŷh,t+1 for period t+ 1 of all sites h ∈ Hα,t:

TSC,t =
1
|Hα,t|

∑
h∈Hα,t

ŷh,t+1, (A larger value is better).

Method consistency test

TMC,t = |Hα,t ∩ Hα,t+1| , (A larger value is better).

Total rank di�erences test

TTRD,t =
1
|Hα,t|

∑
h∈Hα,t

∣∣Rh,t+1 − Rh,t
∣∣ , (A smaller value is better).
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Case study

Site ranking results
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Case study

Site ranking consistency

2007 2008 2009
TSC TMC TTRD TSC TMC TTRD TSC TMC TTRD

EB 28.27 41 25.57 28.62 38 26.34 30.99 27 48.45
NB-fixed 54.95 39 27.03 46.94 39 30.10 60.87 31 49.17
NB-random 56.35 40 23.60 47.48 41 29.67 61.10 30 48.41
NB-BART-I 57.52 33 29.83 49.80 40 33.72 61.84 30 59.40
NB-BART-II 61.05 37 38.19 53.73 40 38.47 69.09 30 45.93

Note: TSC = site consistency test; TMC = method consistency test; TTRD = total rank
di�erences test. For each test and reference period, the best-performing hot spot
identification method is highlighted in bold font.
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Case study

Variable importance
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Case study

Conclusions

Key takeaways
The proposed NB-BART endogenously partitions the predictor space.
Flexibly accounts for interactions and non-linear relationships between predictors.
NB-BART performs as well as or better than the state-of-the-art models.
If predictive performance is paramount, NB-BART may be better than NB models
with linear-in-parameters link function and random parameters.

Avenues for future research
Multivariate NB-BART for the joint modelling of crash counts by crash type.
Accommodate spatiotemporal heterogeneity.
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Case study

Thank you
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Case study
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Case study
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Case study

Comparison of Posterior Estimates
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