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Introduction

Route choice (RC)

Predict the route that a traveler
would choose to go from the
origin (O) to the destination (D)
of her trip.

O D

One of the key travel demand models.

Core of traffic assignment for planning and real-time operations.

Need to go beyond the shortest/ fastest path models.
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Introduction

Random utility models (RUMs) for route choice

1 Decision maker n

2 Alternatives

Choice set Cn
Route representation: path p

Paths as link sequences p ∈ Cn

3 Attributes of alternatives xpn
Usually link additive (travel time,

length, etc.), but also path based.

4 Characteristics of decision maker zn
Usually missing.

5 Decision rule P(p|Cn)

Utility maximization
P(p|Cn) = Pr(Upn ≥ Uqn∀q ∈ Cn)
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Introduction

Motivation

Estimation of RUMs with RP1 data and path assumption is challenging

Operational limitations

Data

Choice set

Structural correlation

Behavioral limitations

1Revealed preference.
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Introduction

State-of-the-art

Path based models

1 Complex;

2 Fail to capture observed behavior.

No realistic, yet simple model, based on RP data has been proposed.

Few attempts to use abstract elements related to perceptions

1 [Ben-Akiva et al., 1984] path generation and sampling;
2 [Frejinger and Bierlaire, 2007] capturing correlation.
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Introduction

Proposed framework

1 Simple model exploiting RP data

2 Not based on paths

3 Key feature: mental representations

4 The general framework may be network-free, yet applicable to traffic
assignment.
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Methodology

Backbone of the framework

A path is solely the manifestation of the route choice –the way the traveler
implements her decision to take a specific route.

How can we represent a route in a behaviorally realistic way without
increasing the model complexity?

Choice takes place at a higher conceptual level.

→ Mental Representation Item (MRI ) = main modeling element
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Methodology

Outline of the methodology

1 Definition of the MRI :

1 Empirical evidence through simple qualitative analyzes

2 Literature review in relevant fields

2 Definition of a RUM model based on MRI :

1 Choice set Cn

2 Explanatory variables xin, zn

3 Specification of the deterministic utility function Vin

4 Assumption about the error terms εin
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Methodology

Mental Representation Item (MRI )

MRIs are associated with mental representations used in daily
language to describe a route.

An MRI is an item characterising the mental representation of an
itinerary:

E.g. a highway, the city center or a bridge.
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Methodology

The MRI components

Perceptual: a name and a description; Tangible: a point and an area

Athens

Name

Description

Representative points

Geographical span

Katechaki

“City center” —

Go through the center

“Peripheral” —

Avoid the center

N

“D”

Kazagli & Bierlaire (EPFL, TRANSP-OR) STRC 2015 April 16, 2015 11 / 42



Methodology

The MRI definition

The exact definition of the MRI is context dependent, and must be
designed such that:

1 It has a meaningful behavioral interpretation, and

2 Its level of aggregation is high enough for the model to be simple and
operational, and low enough for the model to be usefull.
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Methodology

Definition of the alternatives

A route is either one-MRI or a sequence-of-MRIs.

The number of MRIs should be kept low so that the number of
sequences-of-MRIs is also low and can be enumerated.

Issues:

1 How to relate available data to MRI alternatives; and

2 How to specify the utility function for the abstract alternatives.

→ Different heuristics can be considered and evaluated.
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Methodology

From data to MRIs

Interviews and surveys.

GPS devices and smartphones.

Maximum likelihood estimation:

Obtain the contribution of each piece of data to the likelihood
function. Let i be an alternative of the MRI model, and y an
observation, then:

∑
i P(y |i) · P(i |C , xin, zn)

where P(y |i) is the measurement model, P(i |C , xin, zn) is the choice model.

Associating each piece of data to a single alternative, so that P(y |i) takes values 0

and 1 only, is convenient. For more complex measurement models, we refer to

[Bierlaire and Frejinger, 2008] and [Chen and Bierlaire, 2013].
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Methodology

Specification of the utility function

Probably the most complex part. We need to go from abstract back to specific.

The main modeling element is a mental representation. This has
implications for the specification of the utility functions:

! The attributes are fuzzy and based on perceptions rather than
objective measurements.

X Possibilities to investigate the impact of perception on behavior:

1 Model perceptions –e.g. using latent variables;

2 Network-free approach –e.g. using the level of service of the MRIs;

3 Use network data to generate attributes for each MRI and specify the
utility functions –what we do in the case study.
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Methodology

Operational approach using network data

We propose two heuristics assuming that a network model is available:

X Deterministic approach.

→ Unique representative path for each MRI .

x Expected maximum utility (EMU).

→ Path enumeration and logsum.
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Case study

Borlänge data

X GPS data → map-matched trajectories

X Borlänge road network:

1 3077 nodes and 7459 unidirectional links
2 Link travel times
3 Clear choices

We use a sample of 139 observations.

We focus on the simplest possible case where each route is described
my one-MRI and a common choice set C for all travelers.
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Case study

Borlänge road network
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Case study

Borlänge MRI CS

C ={1: through the city center (CC),

2: clockwise movement around the CC,

3: counter-clockwise movement around the CC,

4: avoid the CC}
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Case study

Definition of the MRIs in Borlänge

Name Description Geographical span Representative node

City center (CC) Go through the CC Every link See Fig. on slide 21
of Borlänge inside the perimeter

Street name Around the center Every link See Fig. on slide 21
on the perimeter

Street name Around the center Every link See Fig. on slide 21
on the perimeter

Street name Avoid the center Every other link See Fig. on slide 21
(Peripheral)
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Case study

Representative nodes

City center (fastest of 
the two)

Perimeter (clock, 
counter-clock 

depending on OD)

Avoid (all ODs except 
for 21-3, 3-21)

Avoid (for ODs 21-3, 
3-21)

21

3

5

42
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Case study

Example of observed routes (1)

Around the CC movements
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Case study

Example of observed routes (2)

Avoid the CC alternatives
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Case study

Example of observed routes (3)

Through the CC movements
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Case study

Example of MRI choice set

——— chosen alternative
(through CC)

——— around CC
alternatives (clock and
counter-clockwise)

——— avoid CC alternative
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Case study

Specification of utility functions and attributes of the

alternatives
Deterministic approach

1 For each MRI determine a representative node m (OD dependent).

2 Calculate the fastest path from O to m.

3 Calculate the fastest path from m to D.

4 Use the attributes of the generated path for the MRI .
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Case study Model specification

Choice model

For high levels of aggregation, logit can be assumed:

Pn(i |C) =
eVni

∑
j∈C eVjn
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Case study Model specification

Specification table of model 1

Piecewise linear travel time for the around alternatives

Parameter name Through CC Around clock CC Around counter CC Avoid CC

ASCCC 0 0 0 0
ASCAROUND 0 1 1 0
ASCAVOID 0 0 0 1

βTIMECC TT (min) 0 0 0

βTIME
(0−10min)
AROUND

0 TT (min) TT (min) 0

βTIME
(>10min)
AROUND

0 TT (min) TT (min) 0

βTIMEAVOID 0 0 0 TT (min)

βLEFT # left turns # left turns # left turns # left turns

βIS # intersections # intersections # intersections # intersections
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Case study Model specification

Specification table of model 2

Length

Parameter name Through CC Around clock CC Around counter CC Avoid CC

ASCCC 0 0 0 0
ASCAROUND 0 1 1 0
ASCAVOID 0 0 0 1

βLENGTHCC Length (km) 0 0 0
βLENGTH 0 Length (km) Length (km) Length (km)

βLEFT # left turns # left turns # left turns # left turns

βIS # intersections # intersections # intersections # intersections
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Case study Model specification

Estimation results
Model 1 Model 2

Parameters Parameter value; Rob. Std Parameter value; Rob. Std
(Rob. t-test 0) (Rob. t-test 0)

ASCAROUND -2.11; 1.44; (-1.47) -0.975; 1.67; (-0.58)

ASCAVOID 1.87; 2.09; (0.89) 0.307; 1.70; (0.18)

βTIMECC -0.772; 0.274; (-2.82)

βTIME
(0−10min)
AROUND

-0.286; 0.165; (-1.74)

βTIME
(>10min)
AROUND

-0.616; 0.216; (-2.86)

βTIMEAVOID -0.583; 0.187; (-3.11)

βLENGTH -0.871; 0.173; (-5.03)

βLENGTHCC -1.48; 0.493; (-2.99)

βLEFT -0.288; 0.130; (2.22) -0.270; 0.143; (-1.89)

βIS -0.0474; 0.022; (-2.16) -0.0631; 0.018; (-3.42)

Number of observations 139 139
Number of parameters 8 6

ρ 0.375 0.416
L(0) -183.201 -183.201

L(β̂) -106.563 -101.064
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Case study Model specification

Forecasting results (Model 1)

1 Randomly select 80% of the data for estimation.

2 Apply the model in the rest 20%.

3 Repeat 100 times.

→ Check market shares (MS), predicted probabilities, elasticities.
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Case study Model specification

Boxplot of MS from the application in 20% of the data and CI from the estimation

with the full dataset

Alternative
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Application

Application

Traffic assignment

1 Metropolis-Hastings (MH) algorithm [Flötteröd and Bierlaire, 2013]
to sample paths given the OD and C.

2 The probability of each path p to be selected, given the OD and C, is:

P(p|C) =
∑

i P(p|i) · P(i |C)

where P(p|i) is the probability of path p to selected given MRI alternative i ,
and P(i |C) is the choice model.
For the assignment we need an indicator function δ(p, i), which is 1 if the
sampled path is consistent with MRI i , and 0 otherwise.
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Application

Application

Route guidance

Provision of information in an aggregate manner:

1 Guidance on VMS2

2 Radio announcements

3 Oral instructions in in-vehicle navigation systems

2Variable message signs.
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Application

Hierarchical ordering of the decision process

Multi-level hierarchical structure ∼Normative Pedestrian Flow Theory

[Hoogendoorn, 2001]

O D
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measurement models
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Route as path on the physical network

standard model

[state of research]

proposed model

[new approach]

Route as sequence of aggregate elements

Engineering view /
Operational decision

Behavioral view /
Strategic decision

COMMON SENSE

DETAIL

RCM in layer l

RCM in layer l+1

RCM in layer l+n

Neighbourhood 
N2

Kazagli & Bierlaire (EPFL, TRANSP-OR) STRC 2015 April 16, 2015 35 / 42



Application

Model structure

Layer ℓ

Choice set: list of MRIs Cℓ.

Choice model:

Pℓ(i |Cℓ;β
ℓ)

Layer ℓ+ 1

Choice set: list of MRIs Cℓ+1.

Choice model:

Pℓ+1(i |Cℓ+1;β
ℓ+1)

Behavioral consistency

All layers refer to the same choice.

Level of granularity varies.

Analysis can be performed in any layer.

Structural consistency

P̄ℓ(i |Cℓ;β
ℓ) =

∑

j∈Cℓ+1

P(i |j , Cℓ;β
ℓ)P(j |Cℓ+1;β

ℓ+1)
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Conclusion

Conclusion

It is possible to have a meaningful model even with one-MRI .

Achievements

Simplification of the choice set and hence the model.

No need for sampling.

Behaviorally realistic.

Flexibility to the analyst.

Challenges

Involved modeling.

Data processing.
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Conclusion

Future steps

1 Traffic assignment.

2 Generation of attributes → EMU

3 Consistency within the hierarchical structure.

4 MRI sequences and additional complexity → Quebec GPS dataset

5 Comparison & combination with RL model [Fosgerau et al., 2013]
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Appendix

Descriptive statistics of the main variables

mean median min max std.dev

TT CC (min) 10.18 8.38 3.88 38.03 6.41
TT CL (min) 9.98 8.18 2.86 38.93 6.32
TT CO (min) 10.21 8.37 3.81 36.47 6.23
TT AV (min) 11.80 13.12 2.66 38.58 11.81
L CC (km) 7.65 5.21 1.88 42.91 7.39
L CL (km) 7.84 5.47 1.57 43.82 7.30
L CO (km) 7.95 5.48 2.33 42.62 7.23
L AV (km) 9.18 9.04 1.54 42.29 8.90

alternative # times chosen

Through CC 13
Clockwise 53

Counter-clockwise 51
Avoid CC 22
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Appendix

Predicted probabilities and elasticity of travel time

Elasticity of travel time (chosen alternative)
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