A Route Choice Model Based on Mental Representations

Evanthia Kazagli & Michel Bierlaire

Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering École Polytechnique Fédérale de Lausanne

April 16, 2015

Agenda

2 Methodology

Case study

Agenda

Introduction

- 2 Methodology
- 3 Case study
- 4 Application

Route choice (RC)

Predict the route that a traveler would choose to go from the origin (O) to the destination (D) of her trip.

- One of the key travel demand models.
- Core of traffic assignment for planning and real-time operations.
- Need to go beyond the shortest/ fastest path models.

Introduction

Random utility models (RUMs) for route choice

- Decision maker n
- Alternatives
 - Choice set C_n
 - Route representation: path p
 - Paths as link sequences $p \in C_n$
- Attributes of alternatives x_{pn} Usually link additive (travel time, length, etc.), but also path based.
- Characteristics of decision maker z_n Usually missing.
- Solution States Decision rule $\mathcal{P}(p|\mathcal{C}_n)$
 - Utility maximization
 - $\mathcal{P}(p|\mathcal{C}_n) = Pr(U_{pn} \geq U_{qn} \forall q \in \mathcal{C}_n)$

Motivation

Estimation of RUMs with ${\it RP}^1$ data and path assumption is challenging

Operational limitations

- Data
- Choice set
- Structural correlation

Behavioral limitations

¹Revealed preference.

Kazagli & Bierlaire (EPFL, TRANSP-OR)

State-of-the-art

- Path based models
 - Complex;
 - Pail to capture observed behavior.
- No realistic, yet simple model, based on RP data has been proposed.
- Few attempts to use abstract elements related to perceptions
 - [Ben-Akiva et al., 1984] path generation and sampling;
 - [Frejinger and Bierlaire, 2007] capturing correlation.

Proposed framework

- Simple model exploiting RP data
- Ont based on paths
- Sey feature: mental representations
- The general framework may be network-free, yet applicable to traffic assignment.

Agenda

2 Methodology

Case study

4 Application

5 Conclusion

Backbone of the framework

A *path* is solely the manifestation of the route choice –the way the traveler implements her decision to take a specific route.

How can we represent a route in a behaviorally realistic way without increasing the model complexity?

• Choice takes place at a higher conceptual level.

 \rightarrow Mental Representation Item (*MRI*) = main modeling element

Outline of the methodology

- Definition of the *MRI*:
 - Empirical evidence through simple qualitative analyzes
 - Literature review in relevant fields
- 2 Definition of a RUM model based on MRI:
 - Choice set C_n
 - Explanatory variables x_{in}, z_n
 - Specification of the deterministic utility function V_{in}
 - **4** Assumption about the error terms ε_{in}

Mental Representation Item (MRI)

- *MRIs* are associated with mental representations used in daily language to describe a route.
- An *MRI* is an item characterising the mental representation of an itinerary:
 - E.g. a highway, the city center or a bridge.

The *MRI* components

Perceptual: a name and a description; Tangible: a point and an area

3

3 > < 3 >

The MRI definition

The exact definition of the MRI is context dependent, and must be designed such that:

- It has a meaningful behavioral interpretation, and
- Its level of aggregation is high enough for the model to be simple and operational, and low enough for the model to be usefull.

Definition of the alternatives

A route is either one-*MRI* or a sequence-of-*MRIs*.

The number of MRIs should be kept low so that the number of sequences-of-MRIs is also low and can be enumerated.

Issues:

- I How to relate available data to MRI alternatives; and
- I How to specify the utility function for the abstract alternatives.

 \rightarrow Different heuristics can be considered and evaluated.

From data to MRIs

- Interviews and surveys.
- GPS devices and smartphones.

Maximum likelihood estimation:

Obtain the contribution of each piece of data to the likelihood function. Let i be an alternative of the *MRI* model, and y an observation, then:

$$\sum_i P(y|i) \cdot P(i|C, x_{in}, z_n)$$

where P(y|i) is the measurement model, $P(i|C, x_{in}, z_n)$ is the choice model. Associating each piece of data to a single alternative, so that P(y|i) takes values 0 and 1 only, is convenient. For more complex measurement models, we refer to [Bierlaire and Frejinger, 2008] and [Chen and Bierlaire, 2013].

Specification of the utility function

Probably the most complex part. We need to go from abstract back to specific.

The main modeling element is a mental representation. This has implications for the specification of the utility functions:

! The attributes are fuzzy and based on perceptions rather than objective measurements.

- \checkmark Possibilities to investigate the impact of perception on behavior:
 - Model perceptions –e.g. using latent variables;
 - Network-free approach –e.g. using the level of service of the MRIs;
 - Use network data to generate attributes for each *MRI* and specify the utility functions –what we do in the case study.

Operational approach using network data

We propose two heuristics assuming that a network model is available:

✓ Deterministic approach.

 \rightarrow Unique representative path for each MRI.

x Expected maximum utility (EMU).

 \rightarrow Path enumeration and logsum.

Agenda

2 Methodology

Borlänge data

- \checkmark GPS data \rightarrow map-matched trajectories
- \checkmark Borlänge road network:
 - 3077 nodes and 7459 unidirectional links
 - 2 Link travel times
 - Clear choices
- We use a sample of 139 observations.
- We focus on the simplest possible case where each route is described my one-*MRI* and a common choice set C for all travelers.

Borlänge road network

Borlänge MRI CS

- $\mathcal{C} = \{ 1: \text{ through the city center (CC), } \}$
 - 2: clockwise movement around the CC,
 - 3: counter-clockwise movement around the CC,
 - 4: avoid the CC}

Definition of the MRIs in Borlänge

Name	Description	Geographical span	Representative node
City center (CC) of Borlänge	Go through the CC	Every link inside the perimeter	See Fig. on slide 21
Street name	Around the center	Every link on the perimeter	See Fig. on slide 21
Street name	Around the center	Every link on the perimeter	See Fig. on slide 21
Street name	Avoid the center (Peripheral)	Every other link	See Fig. on slide 21

Representative nodes

Kazagli & Bierlaire (EPFL, TRANSP-OR)

April 16, 2015 21 / 42

Example of observed routes (1)

Around the CC movements

Example of observed routes (2)

Avoid the CC alternatives

Example of observed routes (3)

Through the CC movements

Example of MRI choice set

——— chosen alternative
(through CC)

------ around CC alternatives (clock and counter-clockwise)

---- avoid CC alternative

Specification of utility functions and attributes of the alternatives

Deterministic approach

Sor each *MRI* determine a representative node *m* (OD dependent).

- Calculate the fastest path from O to m.
- Solution \bigcirc Calculate the fastest path from m to D.
- Use the attributes of the generated path for the MRI.

Choice model

For high levels of aggregation, logit can be assumed:

$$\mathcal{P}_n(i|\mathcal{C}) = rac{e^{\mathcal{V}_{ni}}}{\sum_{j\in \mathcal{C}} e^{\mathcal{V}_{jn}}}$$

Model specification

Specification table of model 1

Piecewise linear travel time for the around alternatives

Parameter name	Through CC	Around clock CC	Around counter CC	Avoid CC
ASC _{CC} ASC _{AROUND} ASC _{AVOID}	0 0 0	0 1 0	0 1 0	0 0 1
$\beta TIME_{CC}$	TT (min)	0	0	0
$\beta TIME_{AROUND}^{(0-10min)}$	0	TT (min)	TT (min)	0
$\beta TIME_{AROUND}^{(>10min)}$	0	TT (min)	TT (min)	0
$\beta TIME_{AVOID}$	0	0	0	TT (min)
$\beta LEFT$	# left turns	# left turns	# left turns	# left turns
βIS	# intersections	# intersections	# intersections	# intersections

3

Model specification

Specification table of model 2

Length

Parameter name	Through CC	Around clock CC	Around counter CC	Avoid CC
ASC _{CC} ASC _{AROUND} ASC _{AVOID} βLENGTH _{CC} βLENGTH	0 0 0 Length (km)	0 1 0 Length (km)	0 1 0 Length (km)	0 0 1 0 Length (km)
βLEFT βIS	# left turns # intersections			

3

Estimation results

	N4 - J - L 1	Madal 2
	Model 1	Model 2
Parameters	Parameter value; Rob. Std	Parameter value; Rob. Std
	(Rob. <i>t</i> -test 0)	(Rob. <i>t</i> -test 0)
ASC _{AROUND}	-2.11; 1.44; (-1.47)	-0.975; 1.67; (-0.58)
ASCAVOID	1.87; 2.09; (0.89)	0.307; 1.70; (0.18)
$\beta TIME_{CC}$	-0.772; 0.274; (-2.82)	
$\beta TIME_{AROUND}^{(0-10min)}$	-0.286; 0.165; (-1.74)	
AROUND	-0.200, 0.103, (-1.14)	
(>10min)		
$\beta TIME_{AROUND}^{(>10min)}$	-0.616; 0.216; (-2.86)	
$\beta TIME_{AVOID}$	-0.583; 0.187; (-3.11)	
β LENGTH		-0.871; 0.173; (-5.03)
$\beta LENGTH_{CC}$		-1.48; 0.493; (-2.99)
βLEFT	-0.288; 0.130; (2.22)	-0.270; 0.143; (-1.89)
β IS	-0.0474; 0.022; (-2.16)	-0.0631; 0.018; (-3.42)
· · ·		
Number of observations	139	139
Number of parameters	8	6
$\frac{1}{\rho}$	0.375	0.416
$\mathcal{L}(0)$	-183.201	-183.201
$\tilde{C}(\hat{\beta})$	-106.563	-101.064
\approx (β)	100.000	101.004

-

-

April 16, 2015 30 / 42

3

Forecasting results (Model 1)

- Randomly select 80% of the data for estimation.
- Apply the model in the rest 20%.
- Repeat 100 times.

 \rightarrow Check market shares (MS), predicted probabilities, elasticities.

Boxplot of MS from the application in 20% of the data and CI from the estimation with the full dataset

Agenda

Conclusion

크
Application

Traffic assignment

- Metropolis-Hastings (MH) algorithm [Flötteröd and Bierlaire, 2013] to sample paths given the OD and C.
- **②** The probability of each *path* p to be selected, given the OD and C, is:

 $P(p|\mathcal{C}) = \sum_{i} P(p|i) \cdot P(i|\mathcal{C})$

where P(p|i) is the probability of path p to selected given MRI alternative i, and P(i|C) is the choice model.

For the assignment we need an indicator function $\delta(p, i)$, which is 1 if the sampled path is consistent with *MRI i*, and 0 otherwise.

Application

Route guidance

Provision of information in an aggregate manner:

- Guidance on VMS²
- 2 Radio announcements
- Oral instructions in in-vehicle navigation systems

Application

Hierarchical ordering of the decision process

Multi-level hierarchical structure ~Normative Pedestrian Flow Theory

[Hoogendoorn, 2001]

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Layer $\ell + 1$

Choice model:

• Choice set: list of *MRIs* $C_{\ell+1}$.

 $P_{\ell+1}(i|\mathcal{C}_{\ell+1};\beta^{\ell+1})$

Model structure

Layer ℓ

- Choice set: list of *MRIs* C_{ℓ} .
- Choice model:

 $P_\ell(i|\mathcal{C}_\ell;\beta^\ell)$

Behavioral consistency

- All layers refer to the same choice.
- Level of granularity varies.
- Analysis can be performed in any layer.

Structural consistency

$$\bar{P}_{\ell}(i|\mathcal{C}_{\ell};\beta^{\ell}) = \sum_{j\in\mathcal{C}_{\ell+1}} P(i|j,\mathcal{C}_{\ell};\beta^{\ell}) P(j|\mathcal{C}_{\ell+1};\beta^{\ell+1})$$

Agenda

- 2 Methodology
- 3 Case study
- 4 Application

Conclusion

It is possible to have a meaningful model even with one-MRI.

Achievements

- Simplification of the choice set and hence the model.
- No need for sampling.
- Behaviorally realistic.
- Flexibility to the analyst.

Challenges

- Involved modeling.
- Data processing.

Future steps

- Traffic assignment.
- 2 Generation of attributes \rightarrow EMU
- Onsistency within the hierarchical structure.
- In MRI sequences and additional complexity \rightarrow Quebec GPS dataset
- Scomparison & combination with RL model [Fosgerau et al., 2013]

THANK YOU!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Bibliography I

Ben-Akiva, M., Bergman, M. J., Daly, A., and Ramaswamy, V. (1984).

Modeling interurban route choice behavior.

In Proceedings of the 9th International Symposium on Transportation and Traffic Theory, pages 299–330, Utrecht, The Netherlands.

- Bierlaire, M. and Frejinger, E. (2008).
 Route choice modeling with network-free data.
 Transportation Research Part C: Emerging Technologies, 16(2):187–198.
 - Chen, J. and Bierlaire, M. (2013). Probabilistic multimodal map-matching with rich smartphone data. Journal of Intelligent Transportation Systems.

Bibliography II

Flötteröd, G. and Bierlaire, M. (2013). Metropolis-Hastings sampling of paths. Transportation Research Part B: Methodological, 48:53–66.

 Fosgerau, M., Frejinger, E., and Karlstrom, A. (2013).
 A link based network route choice model with unrestricted choice set. *Transportation Research Part B: Methodological*, 56(0):70 – 80.

Frejinger, E. and Bierlaire, M. (2007).
 Capturing correlation with subnetworks in route choice models.
 Transportation Research Part B: Methodological, 41(3):363–378.

Bibliography III

Hoogendoorn, S. (2001).

Normative Pedestrian Flow Behavior, Theory and Applications. LVV rapport. Delft University of Technology, Faculty of Civil Engineering and Geosciences, Transportation and Traffic Engineering section.

Appendix

Descriptive statistics of the main variables

	mean	median	min	max	std.dev
TT_CC (min)	10.18	8.38	3.88	38.03	6.41
TT_CL (min)	9.98	8.18	2.86	38.93	6.32
TT_CO (min)	10.21	8.37	3.81	36.47	6.23
TT_AV (min)	11.80	13.12	2.66	38.58	11.81
L_CC (km)	7.65	5.21	1.88	42.91	7.39
L_CL (km)	7.84	5.47	1.57	43.82	7.30
L_CO (km)	7.95	5.48	2.33	42.62	7.23
L_AV (km)	9.18	9.04	1.54	42.29	8.90

alternative	# times chosen		
Through CC	13		
Clockwise	53		
Counter-clockwise	51		
Avoid CC	22		

э

Appendix

Predicted probabilities and elasticity of travel time

