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Simulation

Transport policies

Complexity

Transport systems are complex

Many elements interact

Presence of uncertainty
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Simulation

Transport policies

Causal effects

Very important to identify the
causal effects

Failure to do so may generate
wrong conclusions
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Simulation

Example: improving safety

Accidents in Kid City

The mayor of Kid City has commissioned a consulting company

Objective: assess the effectiveness of safety campaigns

They propose to use simulation
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Simulation

Example: improving safety

Accidents in Kid City
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Simulation

Example: improving safety

Accidents in Kid City:
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Simulation

Example: improving safety

Two major flaws

Causal effects are not modeled

Simulation performed with only one draw
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Simulation

Capturing the complexity

Simulation

the act of imitating the behavior of some situation or some

process by means of something suitably analogous
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Simulation: what it is not in engineering



Simulation

Simulation

z = h(x , y , u)

External input — yControl — u

Complex system — state x

Indicators — z
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Simulation

Simulation

Z = h(X ,Y ,U) + εz
εyεu

εx

εz

External input — yControl — u

Complex system — state x

Indicators — z
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Simulation

Simulation

Propagation of uncertainty

Z = h(X ,Y ,U) + εz

Given the distribution of X , Y , U and εz

what is the distribution of Z?

Derivation of indicators

Mean

Variance

Modes

Quantiles
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Simulation

Simulation

Sampling

Draw realizations of X , Y , U, εz

Call them x r , y r , uu, εrz

For each r , compute

z r = h(x r , y r , ur ) + εrz

z r are draws from the random variable Z
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Simulation

Statistics

Indicators

Mean: E[Z ] ≈ Z̄R = 1
R

∑R
r=1 z

r

Variance: Var(Z ) ≈ 1
R

∑R
r=1(z

r − Z̄R)
2.

Modes: based on the histogram

Quantiles: sort and select

Important: there is more than the mean
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Simulation

The mean

Savage et al. (2012)
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Simulation

The mean

The flaw of averages
Savage et al. (2012)

E[Z ] = E[h(X ,Y ,U) + εz ] 6= h(E[X ],E[Y ],E[U]) + E[εz ]

... except if h is linear.

M. Bierlaire (EPFL) Simulation and optimization in transportation June 4, 2014 20 / 55



Simulation

There is more than the mean

Example

Intersection with capacity 2000 veh/hour

Traffic light: 30 sec green / 30 sec red

Constant arrival rate: 2000 veh/hour during 30
minutes

With 30% probability, capacity at 80%.

Indicator: Average time spent by travelers
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Simulation

There is more than the mean
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Simulation

Pitfalls of simulation

Few number of runs

Run time is prohibitive

Tempting to generate partial results rather than no result

Focus on the mean

The mean is useful, but not sufficient.

For complex distributions, it may be misleading.

Intuition from normal distribution (mode = mean, symmetry) do not
hold in general.

Important to investigate the whole distribution.

Simulation allows to do it easily.
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Simulation-based optimization
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Simulation-based optimization

Optimization

Assumptions

U is deterministic.

SR(Z ) is the statistic of Z under interest (mean, quantile, etc.)

R is the number of draws generated to obtain the statistics

Distributions of X , Y and εz are known.

Optimization problem

min
u

f (u) = SR(Z ) = SR(h(X ,Y , u) + εz)

subject to
g(u) = 0.
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Simulation-based optimization

Optimization problem

Optimization problem

min
u

f (u) = SR(Z ) = SR(h(X ,Y , u) + εz)

subject to
g(u) = 0.

Difficulties

R must be large, so calculating f is computationally intensive

The derivatives of f are unavailable or very difficult to obtain
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Simulation-based optimization

Traffic simulation

Parameters calibration

X : state of traffic

Y : observed link flows

u: parameters of the simulator

h: traffic simulator

Z : total squared difference between modeled and observed flows

SR(Z ): mean squared error
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Simulation-based optimization

Traffic simulation

Traffic light optimization

X : state of traffic

Y : OD matrices

u: traffic light configuration

h: traffic simulator

Z : total travel time

SR(Z ): mean of total travel time Osorio and Bierlaire (2013)

SR(Z ): std. dev. of total travel time Chen et al. (2013)
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Black box algorithms
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Black box algorithms

Scenario based optimization

Method

Identify a list of scenarios u1, . . . , uN

Compute f (ui ) for each i

Comments

Solution is feasible and realistic

Limited computational effort

No systematic investigation

Relies only on the creativity of the
analyst
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Black box algorithms

Nonlinear programming

General approach

f (u) = SR(h(X ,Y , u) + εz) is a nonlinear function of u

In general, it is continuous and differentiable

As h is a computer program, the derivatives are not available

Methods

Automatic differentiation Griewank (2000)

Derivative-free optimization Conn et al. (2009)

Direct search Lewis et al. (2000)
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Black box algorithms

Automatic differentiation

Method
Griewank (2000), Naumann (2012)

A software is a sequence of a finite set of
elementary operations

Each of them is easy to differentiate

Use chain rule to propagate
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Black box algorithms

Derivative-free optimization

Method

Build a model of the function using interpolation

Lagrange polynomials
Splines
Kriging

Use a trust region framework to guarantee global
convergence

Comments

Convergence theory

Numerical issues with interpolation

Need for a large number of interpolation points
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Black box algorithms

Direct search
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Method

Generate a sequence of simplices

using geometrical
transformations maintaining the
simplex structure

Comments

Some do not always converge
(Nelder-Nead)

Convergence may be slow

M. Bierlaire (EPFL) Simulation and optimization in transportation June 4, 2014 34 / 55



Black box algorithms

Heuristics

Neighborhood

Simple modifications of u

Feasible or infeasible

Local search

Select a better neighbor

Stop at a local optimum

Meta heuristics

Escape from local optima

Simulated annealing

Variable neighborhood search

and many others...
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Noise reduction

Example of simulation

Machine with 4 states wrt wear

perfect condition,

partially damaged,

seriously damaged,

completely useless.

Transition









0.95 0.04 0.01 0.0
0.0 0.90 0.05 0.05
0.0 0.0 0.80 0.20
1.0 0.0 0.0 0.0









M. Bierlaire (EPFL) Simulation and optimization in transportation June 4, 2014 36 / 55



Noise reduction

Noise reduction: R = 100
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Noise reduction

Noise reduction: R = 1000
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Noise reduction

Noise reduction: R = 10000
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Noise reduction

Noise reduction methods

Adaptive Monte-Carlo
Bastin et al. (2006)

R varies across iterations

Small R in early iterations

R increases as the algorithm converges
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Noise reduction

Noise reduction methods

Least square fitting
Bierlaire et al. (2007), Bierlaire and Crittin (2006)

Interpolation model + adaptive Monte-Carlo

Each iterate considered as a sample

Regression is used instead of interpolation

Comments

Originally for systems of nonlinear equations

An update formula à la Broyden can be derived

Appropriate for large-scale applications (2
millions variables)
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Open box algorithms
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Open box algorithms

Open box algorithms

What are we simulating?

h(·) is a detailed description of our
system

We need simulation because it is
complicated

We open the box, an build a simpler
representation of the system
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Open box algorithms

Deterministic model

Congestion
Osorio and Bierlaire (2009)

Queuing theory

Closed form analytical equations

Simplifying assumptions (e.g.
stationarity)
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Open box algorithms

Metamodel

Osorio and Bierlaire (2013)

m(u, x ;α, β, q) = αT (u, x , q) + φ(u, β)

T (·) analytical model

φ(·) interpolation model

u control (traffic lights)

x state variables
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Open box algorithms

Metamodel

Osorio and Bierlaire (2013)

m(u, x ;α, β, q) = αT (u, x , q) + φ(u, β)

T (·) analytical model

φ(·) interpolation model

u control (traffic lights)

x state variables

engineering

mathematics
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Open box algorithms

Metamodel approach

Ongoing research

Large scale problems Osorio and Chong (ta)

Fuel consumption Osorio and Nanduri (ta)

Emissions Osorio and Nanduri (2013)
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Open box algorithms

Large scale problems

Simulated travel time (with 50 draws) Osorio and Chong (ta)

Initial signal plan Optimized signal plan
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Open box algorithms

Reliability

Simulated standard deviation (with 50 draws)Chen et al. (2013)

Initial signal plan Optimized signal plan
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Conclusions

Summary

Simulation

Number of draws

Beyond the mean

Black box algorithms

Scenarios

Automatic differentiation

Derivative-free

Direct search

Heuristics

Noise reduction

Open box algorithms

Deterministic engineering model

Metamodel
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Conclusions

Conclusion

Everything should be made as
simple as possible, but no
simpler

Albert Einstein
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