Mixtures and latent variables in discrete choice models: an introduction

Michel Bierlaire

Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne

July 16, 2013

Outline

- Discrete choice models
 - Introduction
 - Random utility
 - Logit
- Mixtures
 - Introduction
 - Error component
 - Random parameter
 - Discrete Mixtures

- Summary
- Beyond rationality
 - Examples
- Latent concepts
 - Utility
 - Indicators
 - Measurement equation
 - Hybrid choice model
 - Case study

Discrete choice

- Decision maker: n, with characteristics s_n
- Choice set: C_n
- Attributes: $z_n = (z_{1n}, \dots, z_{J_{nn}}),$
- Choice model:

$$P(i|s_n,z_n,\mathcal{C}_n)$$

- Exogenous variables: $x_n = (s_n, z_n)$
 - both continuous and discrete
- Endogenous variable: i
 - discrete

Utility

Utility functions:

$$U_n = U_n(s_n, z_n, \varepsilon_n)$$

- $U_n \in \mathbb{R}^{J_n} : (U_{1n}, \dots, U_{J_nn})$
- Assumption: *i* is chosen if

$$U_{in} \geq U_{jn}, \ \forall j \in C_n.$$

Random utility

- Issue: ε_n is unobserved.
- Random vector.

$$P(i|\mathcal{C}_n) = \Pr(U_{in} \geq U_{jn}, \ \forall j \in \mathcal{C}_n)$$

• Assumptions must be made on ε_n .

Additive utility

• Utility function:

$$U_{in} = V_{in} + \varepsilon_{in}$$

Deterministic part:

$$V_{in} = V_{in}(s_n, z_{in})$$

- Error term: ε_{in}
 - Expectation: alternative specific constant.
 - Scale: unidentified, must be normalized.
 - Distribution: extreme value, normal, ...

Logit

Assumption: error terms ε_{in} are

- independent
- identically distributed
- across i and across n

$$P(i|s_n, z_n, C_n) = \frac{e^{V_{in}(s_n, z_{in})}}{\sum_{j \in C_n} e^{V_{jn}(s_n, z_{jn})}}$$

Outline

- - Introduction
 - Random utility
 - Logit
- Mixtures
 - Introduction
 - Error component
 - Random parameter
 - Discrete Mixtures

- Summary
- - Examples
- - Utility
 - Indicators
 - Measurement equation
 - Hybrid choice model
 - Case study

Continuous mixtures

In statistics, a mixture probability distribution function is a convex combination of other probability distribution functions.

If $f(\varepsilon, \theta)$ is a distribution function, and if $w(\theta)$ is a non negative function such that

$$\int_{\theta} w(\theta) d\theta = 1$$

then

$$g(\varepsilon) = \int_{\theta} w(\theta) f(\varepsilon, \theta) d\theta$$

is also a distribution function. We say that g is a w-mixture of f. If f is a logit model, g is a continuous w-mixture of logit

Discrete mixtures

Discrete mixtures are also possible. If w_i , i = 1, ..., n are non negative weights such that

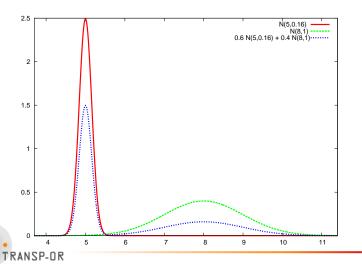
$$\sum_{i=1}^n w_i = 1$$

then

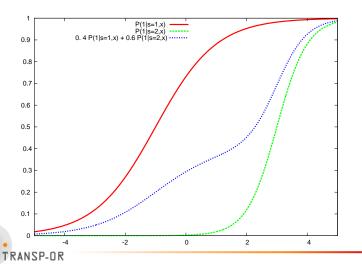
$$g(\varepsilon) = \sum_{i=1}^{n} w_i f(\varepsilon, \theta_i)$$

is also a distribution function where θ_i , $i=1,\ldots,n$ are parameters. We say that g is a discrete w-mixture of f.

Example: discrete mixture of normal distributions



Example: discrete mixture of binary logit models



Motivation

- General motivation: generate flexible distributional forms
- For discrete choice:
 - correlation across alternatives
 - alternative specific variances
 - taste heterogeneity

Continuous mixtures of logit

- Combining probit and logit
- Error decomposed into two parts

$$U_{in} = V_{in} + \xi_{in} +
u_{in}$$
 i.i.d EV (logit): tractability

Normal distribution (probit): flexibility

Choice model

$$U_{in} = V_{in} + \xi_{in} + \nu_{in}$$

- Assumptions:
 - ν_{in} i.i.d. extreme value,
 - $\xi_{in} \sim N(0, \Sigma)$
- If ξ_{in} were observed, we would have a logit model

$$P(i|\xi_n, C_n) = \frac{e^{V_{in} + \xi_{in}}}{\sum_{j \in C_n} e^{V_{jn} + \xi_{in}}}$$

Choice model

• To obtain the model, we must integrate over ξ_n

$$P(i|\mathcal{C}_n) = \int_{\xi} P(i|\xi, \mathcal{C}_n) f(\xi) d\xi = \int_{\xi} \frac{e^{V_{in} + \xi_{in}}}{\sum_{j \in \mathcal{C}_n} e^{V_{jn} + \xi_{in}}} f(\xi) d\xi$$

- $f(\xi)$ is the pdf of the normal distribution.
- Complex integral, requires Monte-Carlo simulation

Simulation

In order to approximate

$$P(i|\mathcal{C}_n) = \int_{\xi} P(i|\xi, \mathcal{C}_n) f(\xi) d\xi = \int_{\xi} \frac{e^{V_{in} + \xi_{in}}}{\sum_{j \in \mathcal{C}_n} e^{V_{jn} + \xi_{in}}} f(\xi) d\xi$$

- Draw from $f(\xi)$ to obtain r_1, \ldots, r_R
- Compute

$$P(i|\mathcal{C}_n) \approx \tilde{P}(i|\mathcal{C}_n) = \frac{1}{R} \sum_{k=1}^{R} P(i|\mathcal{C}_n, r_k)$$
$$= \frac{1}{R} \sum_{k=1}^{R} \frac{e^{V_{in} + r_{ki}}}{\sum_{j \in \mathcal{C}_n} e^{V_{jn} + r_{kj}}}$$

Application: relaxing the independence assumption

Utility:

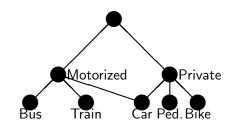
$$\begin{array}{lclcl} \textit{U}_{\text{auto}} & = & \beta \textit{X}_{\text{auto}} & + & \nu_{\text{auto}} \\ \textit{U}_{\text{bus}} & = & \beta \textit{X}_{\text{bus}} & + & \sigma_{\text{transit}} \xi_{\text{transit}} & + & \nu_{\text{bus}} \\ \textit{U}_{\text{subway}} & = & \beta \textit{X}_{\text{subway}} & + & \sigma_{\text{transit}} \xi_{\text{transit}} & + & \nu_{\text{subway}} \end{array}$$

- ν i.i.d. extreme value, $\xi_{\text{transit}} \sim N(0,1)$, $\sigma_{\text{transit}}^2 = \text{cov}(\text{bus,subway})$
- Probability:

$$\Pr(\mathsf{auto}|X, \xi_{\mathsf{transit}}) = \frac{e^{\beta X_{\mathsf{auto}}}}{e^{\beta X_{\mathsf{auto}}} + e^{\beta X_{\mathsf{bus}} + \sigma_{\mathsf{transit}} \xi_{\mathsf{transit}}} + e^{\beta X_{\mathsf{subway}} + \sigma_{\mathsf{transit}} \xi_{\mathsf{transit}}}$$

$$P(\mathsf{auto}|X) = \int_{\xi} \mathsf{Pr}(\mathsf{auto}|X,\xi) f(\xi) d\xi$$

Cross nesting



$$egin{array}{lll} U_{
m bus} &=& V_{
m bus} & + \xi_1 & +
u_{
m bus} \ U_{
m train} &=& V_{
m train} & + \xi_1 & +
u_{
m train} \ U_{
m car} &=& V_{
m car} & + \xi_1 & + \xi_2 & +
u_{
m car} \ U_{
m ped} &=& V_{
m ped} & + \xi_2 & +
u_{
m ped} \ U_{
m bike} &=& V_{
m bike} & + \xi_2 & +
u_{
m bike} \ \end{array}$$

$$P(\mathsf{car}) = \int_{\xi_1} \int_{\xi_2} P(\mathsf{car}|\xi_1, \xi_2) f(\xi_1) f(\xi_2) d\xi_2 d\xi_1$$
TRANSP-DR

Application: relaxing the identical distribution assumption

 Error terms in logit are identically distributed and, in particular, have the same variance

$$U_{in} = \beta^T x_{in} + \mathsf{ASC}_i + \varepsilon_{in}$$

- ε_{in} i.i.d. extreme value $\Rightarrow Var(\varepsilon_{in}) = \pi^2/6\mu^2$
- In order allow for different variances, we use mixtures

$$U_{in} = \beta^{\mathsf{T}} x_{in} + \mathsf{ASC}_i + \sigma_i \xi_i + \nu_{in}$$

where $\xi_i \sim N(0,1)$ and ν_{in} are i.i.d extreme value.

Variance:

$$\mathsf{Var}(\sigma_i \xi_i + \nu_{in}) = \sigma_i^2 + \frac{\pi^2}{6\mu^2}$$

Alternative specific variance

Example with Swissmetro

	ASC_CAR	ASC_SBB	ASC_SM	$B_{-}COST$	$B_{-}FR$	$B_{-}TIME$
Car	1	0	0	cost	0	time
Train	0	0	0	cost	freq.	time
Swissmetro	0	0	1	cost	freq.	time

+ alternative specific variance

	Logit		ASV		ASV norm.	
\mathcal{L}	-5315.39		-5241.01		-5242.10	
	Value	Scaled	Value	Scaled	Value	Scaled
ASC_CAR	0.189	1.000	0.248	1.000	0.241	1.000
ASC_SM	0.451	2.384	0.903	3.637	0.882	3.657
$B_{-}COST$	-0.011	-0.057	-0.018	-0.072	-0.018	-0.073
B_FR	-0.005	-0.028	-0.008	-0.031	-0.008	-0.032
$B_{-}TIME$	-0.013	-0.067	-0.017	-0.069	-0.017	-0.071
SIGMA_CAR			0.020			
SIGMA_TRAIN			0.039		0.061	
SIGMA_SM			3.224		3.180	

Taste heterogeneity

- Population is heterogeneous
- Taste heterogeneity is captured by segmentation
- Deterministic segmentation is desirable but not always possible
- Distribution of a parameter in the population

Disributed time coefficient

$$U_{i} = \beta_{t} T_{i} + \beta_{c} C_{i} + \varepsilon_{i}$$

$$U_{j} = \beta_{t} T_{j} + \beta_{c} C_{j} + \varepsilon_{j}$$

Let $\beta_t \sim N(\bar{\beta}_t, \sigma_t^2)$, or, equivalently,

$$\beta_t = \bar{\beta}_t + \sigma_t \xi$$
, with $\xi \sim N(0, 1)$.

$$U_{i} = \bar{\beta}_{t} T_{i} + \sigma_{t} \xi T_{i} + \beta_{c} C_{i} + \varepsilon_{i}$$

$$U_{j} = \bar{\beta}_{t} T_{j} + \sigma_{t} \xi T_{j} + \beta_{c} C_{j} + \varepsilon_{j}$$

If ε_i and ε_i are i.i.d. EV and ξ is given, we have

$$P(i|\xi) = \frac{e^{\bar{\beta}_t T_i + \sigma_t \xi T_i + \beta_c C_i}}{e^{\bar{\beta}_t T_i + \sigma_t \xi T_i + \beta_c C_i} + e^{\bar{\beta}_t T_j + \sigma_t \xi T_j + \beta_c C_j}}, \text{ and}$$

$$F(i) = \int_{\xi} P(i|\xi)f(\xi)d\xi.$$

Example with Swissmetro

	ASC_CAR	ASC_SBB	ASC_SM	$B_{-}COST$	$B_{-}FR$	B_TIME
Car	1	0	0	cost	0	time
Train	0	0	0	cost	freq.	time
Swissmetro	0	0	1	cost	freq.	time

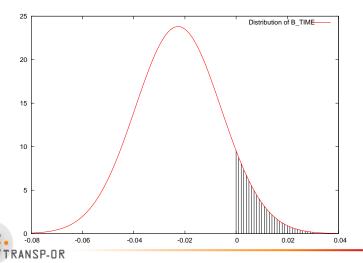
B_TIME randomly distributed across the population, normal distribution

25 / 73

Estimated parameters

	Logit	RC
\mathcal{L}	-5315.4	-5198.0
ASC_CAR_SP	0.189	0.118
ASC_SM_SP	0.451	0.107
B_COST	-0.011	-0.013
B_FR	-0.005	-0.006
B_TIME	-0.013	-0.023
$S_{-}TIME$		0.017
$Prob(B_{-}TIME \geq 0)$		8.8%
χ^2		234.84

Distribution of the parameter



Another distribution

Example with Swissmetro

	ASC_CAR	ASC_SBB	ASC_SM	$B_{-}COST$	$B_{-}FR$	$B_{-}TIME$
Car	1	0	0	cost	0	time
Train	0	0	0	cost	freq.	time
Swissmetro	0	0	1	cost	freq.	time

B_TIME randomly distributed across the population, log normal distribution

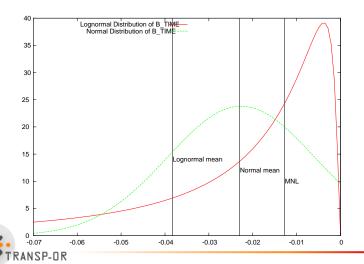
Syntax for Biogeme

```
[Utilities]
11 SBB_SP TRAIN_AV_SP ASC_SBB_SP * one
                    B_COST * TRAIN_COST +
                    B_FR * TRAIN_FR
21 SM_SP SM_AV
                    ASC\_SM\_SP * one
                    B_COST * SM_COST
                    B_FR * SM_FR
31 Car_SP CAR_AV_SP ASC_CAR_SP * one
                    B_COST * CAR_CO
[GeneralizedUtilities]
11 - exp( B_TIME [ S_TIME ] ) * TRAIN_TT
21 - \exp(B_TIME [S_TIME]) * SM_TT
31 - exp(B_TIME [ S_TIME ] ) * CAR_TT
```


Estimation results

	Logit	RC-norm.	RC-logn.	
	-5315.4	-5198.0	-5215.81	
ASC_CAR_SP	0.189	0.118	0.122	
ASC_SM_SP	0.451	0.107	0.069	
$B_{-}COST$	-0.011	-0.013	-0.014	
B₋FR	-0.005	-0.006	-0.006	
$B_{-}TIME$	-0.013	-0.023	-4.033	-0.038
$S_{-}TIME$		0.017	1.242	0.073
$Prob(\beta > 0)$		8.8%	0.0%	
χ^2		234.84	199.16	

Distribution of the parameter



Another distribution

Example with Swissmetro

	ASC_CAR	ASC_SBB	ASC_SM	$B_{-}COST$	$B_{-}FR$	$B_{-}TIME$
Car	1	0	0	cost	0	time
Train	0	0	0	cost	freq.	time
Swissmetro	0	0	1	cost	freq.	time

B_TIME randomly distributed across the population, discrete distribution

$$P(\beta_{\mathsf{time}} = \hat{\beta}) = \omega_1 \quad P(\beta_{\mathsf{time}} = 0) = \omega_2 = 1 - \omega_1$$

32 / 73

Syntax for Biogeme

```
[DiscreteDistributions]
B_{TIME} < B_{TIME_1} (W1) B_{TIME_2} (W2) >
[LinearConstraints]
W1 + W2 = 1.0
```


Estimation results

	Logit	RC-norm.	RC-logn.		RC-disc.
	-5315.4	-5198.0	-5215.8		-5191.1
ASC_CAR_SF	0.189	0.118	0.122		0.111
ASC_SM_SF	0.451	0.107	0.069		0.108
B_COS1	Γ -0.011	-0.013	-0.014		-0.013
B_FF	R -0.005	-0.006	-0.006		-0.006
B_TIME	E -0.013	-0.023	-4.033	-0.038	-0.028
					0.000
$S_{-}TIME$	Ξ	0.017	1.242	0.073	
W	1				0.749
W	2				0.251
$Prob(\beta > 0)$)	8.8%	0.0%		0.0%
χ^2	2	234.84	199.16		248.6

Summary

- Logit mixtures models
 - Computationally more complex than logit
 - Allow for more flexibility than logit
- Continuous mixtures: alternative specific variance, nesting structures, random parameters

$$P(i) = \int_{\xi} \Pr(i|\xi) f(\xi) d\xi$$

Discrete mixtures:

$$P(i) = \sum_{s=1}^{S} w_s \Pr(i|s).$$

Tips for applications

- Be careful: simulation can mask specification and identification issues
- Do not forget about the systematic portion

Outline

- - Introduction
 - Random utility
 - Logit
- - Introduction
 - Error component
 - Random parameter
 - Discrete Mixtures

- Summary
- Beyond rationality
 - Examples
- - Utility
 - Indicators
 - Measurement equation
 - Hybrid choice model
 - Case study

Beyond rationality

- Standard random utility assumptions are often violated.
- Factors such as attitudes, perceptions, knowledge are not reflected.

Example: pain lovers

Kahneman, D., Fredrickson, B., Schreiber, C.M., and Redelmeier, D., When More Pain Is Preferred to Less: Adding a Better End, Psychological Science, Vol. 4, No. 6, pp. 401-405, 1993.

- Short trial: immerse one hand in water at 14° for 60 sec.
- \bullet Long trial: immerse the other hand at 14° for 60 sec, then keep the hand in the water 30 sec. longer as the temperature of the water is gradually raised to 15°.
- Outcome: most people prefer the long trial.
- Explanation:
 - duration plays a small role
 - the peak and the final moments matter

Example: *The Economist*

Example: subscription to *The Economist*

Web only	@ \$59
Print only	@ \$125
Print and web	@ \$125

Example: *The Economist*

Example: subscription to *The Economist*

Experiment 1	Experiment 2
Web only @ \$59	Web only @ \$59
Print only @ \$125	
Print and web @ \$125	Print and web @ \$125

Example: The Economist

Example: subscription to *The Economist*

	Experiment 1	Experiment 2	
16	Web only @ \$59	Web only @ \$59	68
0	Print only @ \$125		
84	Print and web @ \$125	Print and web @ \$125	32

Source: Ariely (2008)

- Dominated alternative
- According to utility maximization, should not affect the choice
- But it affects the perception, which affects the choice.

Example: good or bad wine?

Choose a bottle of wine...

	Experiment 1	Experiment 2
1	McFadden red at \$10	McFadden red at \$10
2	Nappa red at \$12	Nappa red at \$12
3		McFadden special reserve
		pinot noir at \$60
	Most would choose 2	Most would choose 1

Context plays a role on perceptions

Example: live and let die

Population of 600 is threatened by a disease. Two alternative treatments to combat the disease have been proposed.

to combat the disease have been proposed.		
Experiment 1 # resp. = 152	Experiment 2 # resp. = 155	
Treatment A: 200 people saved	Treatment C: 400 people die	
Treatment B: 600 people saved with prob. 1/3 0 people saved with prob. 2/3	Treatment D: 0 people die with prob. 1/3 600 people die with prob. 2/3	

Example: live and let die

Population of 600 is threatened by a disease. Two alternative treatments

to combat the disease have been proposed.

	Experiment 1 # resp. = 152	Experiment 2 # resp. = 155	
72%	Treatment A: 200 people saved	Treatment C: 400 people die	22%
28%	Treatment B: 600 people saved with prob. 1/3	Treatment D: 0 people die with prob. 1/3	78%
	0 people saved with prob. 2/3	600 people die with prob. 2/3	

Source: Tversky & Kahneman

Example: to be free

Choice between a fine and a regular chocolate

	Experiment 1	Experiment 2
Lindt	\$0.15	\$0.14
Hershey	\$0.01	\$0.00
Lindt chosen	73%	31%
Hershey chosen	27%	69%

Source: Ariely (2008) Predictably irrational, Harper Collins.

Outline

- - Introduction
 - Random utility
 - Logit
- - Introduction
 - Error component
 - Random parameter
 - Discrete Mixtures

- Summary
- - Examples
- Latent concepts
 - Utility
 - Indicators
 - Measurement equation
 - Hybrid choice model
 - Case study

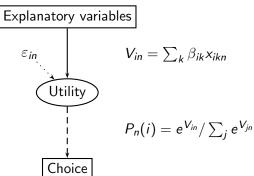
Latent concepts

- latent: potentially existing but not presently evident or realized (from Latin: *lateo* = lie hidden)
- Here: not directly observed
- Standard models are already based on a latent concept: utility

Drawing convention:

- Latent variable
 - Observed variable
 - structural relation:
 - measurement: ____
 - errors:

Random utility



Attitudes

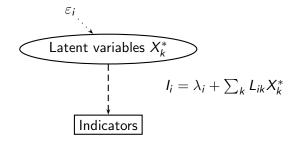
- Psychometric indicators
- Example: attitude towards the environment.
- For each question, response on a scale: strongly agree, agree, neutral, disagree, strongly disagree, no idea.
 - The price of oil should be increased to reduce congestion and pollution
 - More public transportation is necessary, even if it means additional taxes
 - Ecology is a threat to minorities and small companies.
 - People and employment are more important than the environment.
 - I feel concerned by the global warming.
 - Decisions must be taken to reduce the greenhouse gas emission.

Indicators

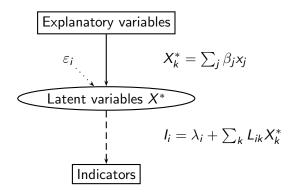
Indicators cannot be used as explanatory variables. Mainly two reasons:

- Measurement errors
 - Scale is arbitrary and discrete
 - People may overreact
 - Justification bias may produce exaggerated responses
- No forecasting possibility
 - No way to predict the indicators in the future

Factor analysis



Measurement equation



Measurement equation

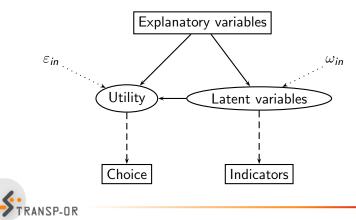
Continuous model: regression

$$I = f(X^*; \beta) + \varepsilon$$

Discrete model: thresholds

$$I = \begin{cases} 1 & \text{if } -\infty < X^* \le \tau_1 \\ 2 & \text{if } \tau_1 < X^* \le \tau_2 \\ 3 & \text{if } \tau_2 < X^* \le \tau_3 \\ 4 & \text{if } \tau_3 < X^* \le \tau_4 \\ 5 & \text{if } \tau_4 < X^* \le +\infty \end{cases}$$

Choice model



Estimation: likelihood

Structural equations:

Distribution of the latent variables:

$$f_1(X_n^*|X_n;\lambda,\Sigma_\omega)$$

For instance $X_n^* = h(X_n; \lambda) + \omega_n$, $\omega_n \sim N(0, \Sigma_\omega)$.

② Distribution of the utilities:

$$f_2(U_n|X_n,X_n^*;\beta,\Sigma_{\varepsilon})$$

For instance $U_n = V(X_n, X_n^*; \beta) + \varepsilon_n$, $\varepsilon_n \sim N(0, \Sigma_\omega)$.

Estimation: likelihood

Measurement equations:

Distribution of the indicators:

$$f_3(I_n|X_n,X_n^*;\alpha,\Sigma_{\nu})$$

For instance:

$$I_n = m(X_n, X_n^*; \alpha) + \nu_n, \quad \nu_n \sim N(0, \Sigma_{\nu}).$$

Distribution of the observed choice:

$$P(y_{in} = 1) = \Pr(U_{in} \ge U_{in}, \forall j).$$

Indicators: continuous output

$$f_3(I_n|X_n,X_n^*;\alpha,\Sigma_{\nu})$$

For instance:

$$I_n = m(X_n, X_n^*; \alpha) + \nu_n, \quad \nu_n \sim N(0, \sigma_{\nu_n}^2)$$

So.

$$f_3(I_n|\cdot) = \frac{1}{\sigma_{\nu_n}\sqrt{2\pi}} \exp\left(-\frac{(I_n - m(\cdot))^2}{2\sigma_{\nu_n}^2}\right)$$

Define

$$Z = rac{I_n - m(\cdot)}{\sigma_{
u_n}} \sim N(0, 1), \quad \phi(Z) = rac{1}{\sqrt{2\pi}} e^{-Z^2/2}$$

and

$$f_3(I_n|\cdot) = \frac{1}{\sigma_u}\phi(Z)$$

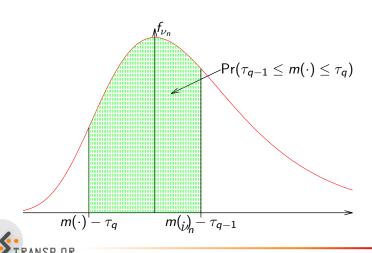
Indicators: discrete output

$$f_3(I_n|X_n,X_n^*;\alpha,\Sigma_{\nu})$$

For instance:

$$I_n = m(X_n, X_n^*; \alpha) + \nu_n, \quad \nu_n \sim \mathsf{Logistic}(0,1)$$

Indicators: discrete output



Estimation: likelihood

Assuming ω_n , ε_n and ν_n are independent, we have

$$\mathcal{L}_n(y_n, I_n|X_n; \alpha, \beta, \lambda, \Sigma_{\varepsilon}, \Sigma_{\nu}, \Sigma_{\omega}) =$$

$$\int_{X^*} P(y_n|X_n,X^*;\beta,\Sigma_{\varepsilon}) f_3(I_n|X_n,X^*;\alpha,\Sigma_{\nu}) f_1(X^*|X_n;\lambda,\Sigma_{\omega}) dX^*.$$

Maximum likelihood estimation:

$$\max_{\alpha,\beta,\lambda,\Sigma_{\varepsilon},\Sigma_{\nu},\Sigma_{\omega}} \sum_{n} \log \left(\mathcal{L}_{n}(y_{n},I_{n}|X_{n};\alpha,\beta,\lambda,\Sigma_{\varepsilon},\Sigma_{\nu},\Sigma_{\omega}) \right)$$

Source: Walker (2001)

ロト (個) (重) (重) 重 ののの

Case study: value of time

- Effect of attitude on value of time
- SP survey, Stockholm, Sweden, 2005
- 2400 households surveyed
- Married couples with both husband and wife working or studying
- Choice between car alternatives
- Data used: 554 respondents, 2216 SP responses
- Attributes:
 - travel time
 - travel cost
 - number of speed cameras

Attitudinal questions

- It feels safe to go by car.
- It is comfortable to go by car to work.
- It is very important that traffic speed limits are not violated.
- Increase the motorway speed limit to 140 km/h.

Likert scale:

- 1: do not agree at all
- 5: do fully agree

Structural models

Attitude model, capturing the positive attitude towards car

$$\begin{array}{lll} \mathsf{Attitude} &=& \theta_0 \cdot 1 & \mathsf{(intercept)} \\ &+& \theta_f \cdot \mathsf{female} \\ &+& \theta_{\mathsf{inc}} \cdot \mathsf{income} & \mathsf{(monthly, in Kronas)} \\ &+& \theta_{\mathsf{age1}} \cdot (\mathsf{Age} < 55) \\ &+& \theta_{\mathsf{age2}} \cdot (\mathsf{Age} 55 - 65) \\ &+& \theta_{\mathsf{age3}} \cdot (\mathsf{Age} > 65) \\ &+& \theta_{\mathsf{edu1}} \cdot (\mathsf{basic/pre\ high\ school}) \\ &+& \theta_{\mathsf{edu2}} \cdot (\mathsf{university}) \\ &+& \theta_{\mathsf{edu3}} \cdot (\mathsf{other}) \\ && \sigma \cdot \omega & \mathsf{(normal\ error\ term)} \end{array}$$

64 / 73

Structural models

Choice model: 3 alternatives

- Car on route 1
- Car on route 2
- Indifferent (utility = 0)

$$\begin{array}{ll} \text{Utility}_i = & \beta_i & \text{(ASC)} \\ & + \beta_{\mathsf{t}} \cdot \mathsf{travel\ time}_i \\ & + \beta_{\mathsf{c}} \cdot \mathsf{cost}_i \ / \ \mathsf{Income} \\ & + \gamma \cdot \mathsf{cost}_i \cdot \mathsf{Attitude} \ / \ \mathsf{Income} \\ & + \beta_{\mathsf{cam}} \cdot \# \ \mathsf{cameras}_i \\ & + \varepsilon_i & \text{(EV\ error\ term)} \end{array}$$

Note: standard model obtained with $\gamma = 0$. TRANSP-OR

Value of time

• Model without attitude variable ($\gamma = 0$)

$$VOT = \frac{\beta_{t}}{\beta_{c}} * Income$$

Model with attitude variable

$$VOT = \frac{\beta_{t}}{\beta_{c} + \gamma \cdot Attitude} * Income$$

Note: distributed

Measurement equations

Choice:

$$y_i = \begin{cases} 1 & \text{if } U_i \ge U_j, j \ne i \\ 0 & \text{otherwise} \end{cases}$$

• Attitude questions: k = 1, ..., 4

$$I_k = \alpha_k + \lambda_k \mathsf{Attitude} + \mu_k$$

where I_k is the response to question k.

Model estimation

- Simultaneous estimation of all parameters
- with Biogeme 2.0
- Important: both the choice and the indicators reveal something about the attitude.

Measurement equations

It feels safe to go by car.

$$I_1 = \mathsf{Attitude} + 0.5666 \
u_1$$

It is comfortable to go by car to work.

$$I_2 = 1.13 + 0.764$$
 Attitude $+ 0.909 \
u_2$

• It is very important that traffic speed limits are not violated.

$$I_3 = 3.53 - 0.0716 \; \mathsf{Attitude} + 1.25 \; \nu_3$$

• Increase the motorway speed limit to 140 km/h.

$$I_4=1.94+0.481$$
 Attitude $+1.37$ ν_4

Structural model

Attitude towards car:

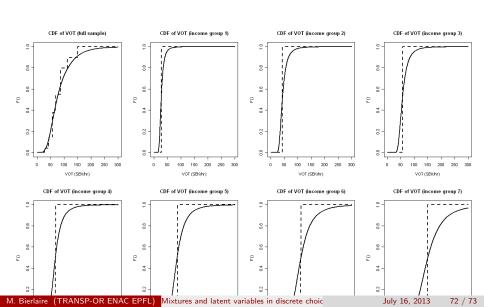
Param.	Estim.	<i>t</i> -stat.
θ_0	5.25	8.99
$ heta_f$	-0.0185	-0.34
$ heta_{\sf inc}$	0.0347	1.99
$ heta_{ extsf{age1}}$	-0.0217	-1.85
$ heta_{\sf age2}$	0.00797	0.88
$ heta_{\sf age3}$	0.0231	2.35
$ heta_{edu1}$	-0.147	-0.94
$ heta_{\sf edu2}$	-0.252	-5.22
$ heta_{\sf edu3}$	-0.157	-0.85
σ	0.934	16.18

Structural model

Utility:

Param.	Estim.	t-stat.
β_1	4.01	15.58
eta_2	2.84	10.57
Time	-0.0388	-8.10
Cost/Income	-2.02	-3.63
Cost · Attitude/Income	0.265	2.11
Speed camera	-0.109	-2.75

Value of time



Conclusion

- Flexible models with more structure
- Translate more assumptions into equations
- More complicated to estimate
- Currently very active field for research and applications.

