Introduction to mixtures in discrete choice models

Michel Bierlaire

michel.bierlaire@epfl.ch

Transport and Mobility Laboratory

Introduction to mixtures in discrete choice models – p. 1/42

Outline

- Mixtures
- Capturing correlation
- Alternative specific variance
- Taste heterogeneity
- Latent classes

Mixtures

In statistics, a mixture probability distribution function is a convex combination of other probability distribution functions. If $f(\varepsilon, \theta)$ is a distribution function, and if $w(\theta)$ is a non negative function such that

$$\int_{\theta} w(\theta) d\theta = 1$$

then

$$g(\varepsilon) = \int_{\theta} w(\theta) f(\varepsilon, \theta) d\theta$$

is also a distribution function. We say that g is a w-mixture of f. If f is a logit model, g is a continuous w-mixture of logit If f is a MEV model, g is a continuous w-mixture of MEV

Mixtures

Discrete mixtures are also possible. If w_i , i = 1, ..., n are non negative weights such that

$$\sum_{i=1}^{n} w_i = 1$$

then

$$g(\varepsilon) = \sum_{i=1}^{n} w_i f(\varepsilon, \theta_i)$$

is also a distribution function where θ_i , i = 1, ..., n are parameters. We say that g is a discrete w-mixture of f.

Example: discrete mixture of normal distributions

Introduction to mixtures in discrete choice models - p. 5/42

Example: discrete mixture of binary logit models

Mixtures

- General motivation: generate flexible distributional forms
- For discrete choice:
 - correlation across alternatives
 - alternative specific variances
 - taste heterogeneity
 - . . .

Continuous Mixtures of logit

- Combining probit and logit
- Error decomposed into two parts

Normal distribution (probit): flexibility

Introduction to mixtures in discrete choice models – p. 8/42

Logit

• Utility:

$$U_{auto} = \beta X_{auto} + \nu_{auto}$$
$$U_{bus} = \beta X_{bus} + \nu_{bus}$$
$$U_{subway} = \beta X_{subway} + \nu_{subway}$$

- ν i.i.d. extreme value
- Probability:

$$\Lambda(\mathrm{auto}|X) = \frac{e^{\beta X_{\mathrm{auto}}}}{e^{\beta X_{\mathrm{auto}}} + e^{\beta X_{\mathrm{bus}}} + e^{\beta X_{\mathrm{subway}}}}$$

Normal mixture of logit

• Utility:

$$\begin{array}{rclcrcrc} U_{\rm auto} & = & \beta X_{\rm auto} & + & \xi_{\rm auto} & + & \nu_{\rm auto} \\ U_{\rm bus} & = & \beta X_{\rm bus} & + & \xi_{\rm bus} & + & \nu_{\rm bus} \\ U_{\rm subway} & = & \beta X_{\rm subway} & + & \xi_{\rm subway} & + & \nu_{\rm subway} \end{array}$$

- ν i.i.d. extreme value, $\xi \sim N(0, \Sigma)$
- Probability:

$$\Lambda(\operatorname{auto}|X,\xi) = \frac{e^{\beta X_{\operatorname{auto}} + \xi_{\operatorname{auto}}}}{e^{\beta X_{\operatorname{auto}} + \xi_{\operatorname{auto}}} + e^{\beta X_{\operatorname{bus}} + \xi_{\operatorname{bus}}} + e^{\beta X_{\operatorname{subway}} + \xi_{\operatorname{subway}}}}$$

$$P(\mathsf{auto}|X) = \int_{\xi} \Lambda(\mathsf{auto}|X,\xi) f(\xi) d\xi$$

Capturing correlations: nesting

• Utility:

$$\begin{array}{rcl} U_{\text{auto}} &=& \beta X_{\text{auto}} & + & \nu_{\text{auto}} \\ U_{\text{bus}} &=& \beta X_{\text{bus}} & + & \sigma_{\text{transit}} \eta_{\text{transit}} & + & \nu_{\text{bus}} \\ U_{\text{subway}} &=& \beta X_{\text{subway}} & + & \sigma_{\text{transit}} \eta_{\text{transit}} & + & \nu_{\text{subway}} \end{array}$$

- ν i.i.d. extreme value, $\eta_{\text{transit}} \sim N(0, 1)$, $\sigma_{\text{transit}}^2 = \text{cov(bus,subway)}$
- Probability:

 $\Lambda(\operatorname{auto}|X, \eta_{\operatorname{transit}}) = \frac{e^{\beta X_{\operatorname{auto}}}}{e^{\beta X_{\operatorname{auto}}} + e^{\beta X_{\operatorname{bus}} + \sigma_{\operatorname{transit}}\eta_{\operatorname{transit}}} + e^{\beta X_{\operatorname{subway}} + \sigma_{\operatorname{transit}}\eta_{\operatorname{transit}}}$

$$P(\operatorname{auto}|X) = \int_{\eta} \Lambda(\operatorname{auto}|X,\xi) f(\eta) d\eta$$

Example: residential telephone

	ASC_BM	ASC_SM	ASC_LF	ASC_EF	BETA_C	σ_M	σ_F
BM	1	0	0	0	$\ln(\text{cost(BM)})$	η_M	0
SM	0	1	0	0	$\ln(\text{cost}(\text{SM}))$	η_M	0
LF	0	0	1	0	$\ln(\text{cost}(\text{LF}))$	0	η_F
EF	0	0	0	1	$\ln(\text{cost}(\text{EF}))$	0	η_F
MF	0	0	0	0	$\ln(\text{cost}(\text{MF}))$	0	η_F

Introduction to mixtures in discrete choice models – p. 12/42

Nesting structure

Identification issues:

- If there are two nests, only one σ is identified
- If there are more than two nests, all σ 's are identified

Walker (2001)

Results with 5000 draws..

Introduction to mixtures in discrete choice models – p. 13/42

	N	NL NML		IL	NML		NML		NML		
						$\sigma_F = 0$		$\sigma_M = 0$		$\sigma_F = \sigma_M$	
\mathcal{L}	-473	5.219	-472.768		-473.146		-472.779		-472.846		
	Value	Scaled	Value	Scaled	Value	Scaled	Value	Scaled	Value	Scaled	
ASC_BM	-1.784	1.000	-3.81247	1.000	-3.79131	1.000	-3.80999	1.000	-3.81327	1.000	
ASC_EF	-0.558	0.313	-1.19899	0.314	-1.18549	0.313	-1.19711	0.314	-1.19672	0.314	
ASC_LF	-0.512	0.287	-1.09535	0.287	-1.08704	0.287	-1.0942	0.287	-1.0948	0.287	
ASC_SM	-1.405	0.788	-3.01659	0.791	-2.9963	0.790	-3.01426	0.791	-3.0171	0.791	
B_LOGCOST	-1.490	0.835	-3.25782	0.855	-3.24268	0.855	-3.2558	0.855	-3.25805	0.854	
FLAT	2.292										
MEAS	2.063										
σ_F			3.02027		0		3.06144		2.17138		
σ_M			0.52875		3.024833		0		2.17138		
$\sigma_F^2+\sigma_M^2$			9.402		9.150		9.372		9.430		

Comments

- The scale of the parameters is different between NL and the mixture model
- Normalization can be performed in several ways
 - $\sigma_F = 0$
 - $\sigma_M = 0$
 - $\sigma_F = \sigma_M$
- Final log likelihood should be the same
- But... estimation relies on simulation
- Only an approximation of the log likelihood is available
- Final log likelihood with 50000 draws:

Unnormalized:-472.872 $\sigma_M = \sigma_F$:-472.875 $\sigma_F = 0$:-472.884 $\sigma_M = 0$:-472.901

Cross nesting

Introduction to mixtures in discrete choice models - p. 15/42

Identification issue

- Not all parameters can be identified
- For logit, one ASC has to be constrained to zero
- Identification of NML is important and tricky
- See Walker, Ben-Akiva & Bolduc (2007) for a detailed analysis

Alternative specific variance

• Error terms in logit are i.i.d. and, in particular, have the same variance

$$U_{in} = \beta^T x_{in} + \mathsf{ASC}_i + \varepsilon_{in}$$

- ε_{in} i.i.d. extreme value $\Rightarrow Var(\varepsilon_{in}) = \pi^2/6\mu^2$
- In order allow for different variances, we use mixtures

$$U_{in} = \beta^T x_{in} + \mathsf{ASC}_i + \sigma_i \xi_i + \varepsilon_{in}$$

where $\xi_i \sim N(0,1)$

• Variance:

$$\operatorname{Var}(\sigma_i \xi_i + \varepsilon_{in}) = \sigma_i^2 + \frac{\pi^2}{6\mu^2}$$

Alternative specific variance

Identification issue:

- Not all σ s are identified
- One of them must be constrained to zero
- Not necessarily the one associated with the ASC constrained to zero
- In theory, the smallest σ must be constrained to zero
- In practice, we don't know a priori which one it is
- Solution:
 - 1. Estimate a model with a full set of σ s
 - 2. Identify the smallest one and constrain it to zero.

Alternative specific variance

Example with Swissmetro

	ASC_CAR	ASC_SBB	ASC_SM	B_COST	B_FR	B_TIME
Car	1	0	0	cost	0	time
Train	0	0	0	cost	freq.	time
Swissmetro	0	0	1	cost	freq.	time

+ alternative specific variance

Introduction to mixtures in discrete choice models – p. 19/42

	Logit		ASV		ASV norm.		
\mathcal{L}	-5315.39		-524	-5241.01		-5242.10	
	Value	Scaled	Value	Scaled	Value	Scaled	
ASC_CAR	0.189	1.000	0.248	1.000	0.241	1.000	
ASC_SM	0.451	2.384	0.903	3.637	0.882	3.657	
B_COST	-0.011	-0.057	-0.018	-0.072	-0.018	-0.073	
B₋FR	-0.005	-0.028	-0.008	-0.031	-0.008	-0.032	
B _TIME	-0.013	-0.067	-0.017	-0.069	-0.017	-0.071	
SIGMA_CAR			0.020				
SIGMA_TRAIN			0.039		0.061		
SIGMA_SM			3.224		3.180		
	•						

Taste heterogeneity

- Population is heterogeneous
- Taste heterogeneity is captured by segmentation
- Deterministic segmentation is desirable but not always possible
- Distribution of a parameter in the population

Random parameters

$$U_i = \beta_t T_i + \beta_c C_i + \varepsilon_i$$
$$U_j = \beta_t T_j + \beta_c C_j + \varepsilon_j$$

Let $\beta_t \sim N(\bar{\beta}_t, \sigma_t^2)$, or, equivalently,

$$\beta_t = \overline{\beta}_t + \sigma_t \xi$$
, with $\xi \sim N(0, 1)$.

$$U_{i} = \bar{\beta}_{t}T_{i} + \sigma_{t}\xi T_{i} + \beta_{c}C_{i} + \varepsilon_{i}$$
$$U_{j} = \bar{\beta}_{t}T_{j} + \sigma_{t}\xi T_{j} + \beta_{c}C_{j} + \varepsilon_{j}$$

If ε_i and ε_j are i.i.d. EV and ξ is given, we have

$$P(i|\xi) = \frac{e^{\bar{\beta}_t T_i + \sigma_t \xi T_i + \beta_c C_i}}{e^{\bar{\beta}_t T_i + \sigma_t \xi T_i + \beta_c C_i} + e^{\bar{\beta}_t T_j + \sigma_t \xi T_j + \beta_c C_j}}, \text{ and }$$

$$P(i) = \int_{\xi} P(i|\xi) f(\xi) d\xi.$$

Example with Swissmetro

	ASC_CAR	ASC_SBB	ASC_SM	B_COST	B_FR	B_TIME
Car	1	0	0	cost	0	time
Train	0	0	0	cost	freq.	time
Swissmetro	0	0	1	cost	freq.	time

B_TIME randomly distributed across the population, normal distribution

Introduction to mixtures in discrete choice models - p. 22/42

Random parameters

	Logit	RC
L	-5315.4	-5198.0
ASC_CAR_SP	0.189	0.118
ASC_SM_SP	0.451	0.107
B_COST	-0.011	-0.013
B_FR	-0.005	-0.006
B_TIME	-0.013	-0.023
S_TIME		0.017
$Prob(B_TIME \ge 0)$		8.8%
χ^2		234.84

Introduction to mixtures in discrete choice models - p. 23/42

Random parameters

Introduction to mixtures in discrete choice models - p. 24/42

Example with Swissmetro

	ASC_CAR	ASC_SBB	ASC_SM	B_COST	B_FR	B_TIME
Car	1	0	0	cost	0	time
Train	0	0	0	cost	freq.	time
Swissmetro	0	0	1	cost	freq.	time

B_TIME randomly distributed across the population, log normal distribution

[U	tilities]			
11	SBB_SP TRAIN_AV_SP	ASC_SBB_SP	*	one
		B_COST	*	TRAIN_COST
		B_FR	*	TRAIN_FR
21	SM_SP SM_AV	ASC_SM_SP	*	one
		B_COST	*	SM_COST
		B_FR * SM_F	'R	
31	Car_SP CAR_AV_SP	ASC_CAR_SP	*	one
		B_COST	*	CAR_CO

[GeneralizedUtilities] 11 - exp(B_TIME [S_TIME]) * TRAIN_TT 21 - exp(B_TIME [S_TIME]) * SM_TT 31 - exp(B_TIME [S_TIME]) * CAR_TT

Introduction to mixtures in discrete choice models - p. 26/42

+

+

+

+

+

Random parameters

	Logit	RC-norm.	RC-logn.	
	-5315.4	-5198.0	-5215.81	
ASC_CAR_SP	0.189	0.118	0.122	
ASC_SM_SP	0.451	0.107	0.069	
B_COST	-0.011	-0.013	-0.014	
B_FR	-0.005	-0.006	-0.006	
B_TIME	-0.013	-0.023	-4.033	-0.038
S_TIME		0.017	1.242	0.073
$Prob(\beta > 0)$		8.8%	0.0%	
χ^2		234.84	199.16	

Introduction to mixtures in discrete choice models - p. 27/42

Random parameters

Example with Swissmetro

	ASC_CAR	ASC_SBB	ASC_SM	B_COST	B_FR	B_TIME
Car	1	0	0	cost	0	time
Train	0	0	0	cost	freq.	time
Swissmetro	0	0	1	cost	freq.	time

B_TIME randomly distributed across the population, discrete distribution

$$P(\beta_{\text{time}} = \hat{\beta}) = \omega_1 \quad P(\beta_{\text{time}} = 0) = \omega_2 = 1 - \omega_1$$


```
[DiscreteDistributions]
B_TIME < B_TIME_1 ( W1 ) B_TIME_2 ( W2 ) >
```

[LinearConstraints] W1 + W2 = 1.0

Random parameters

	Logit	RC-norm.	RC-logn.		RC-disc.
	-5315.4	-5198.0	-5215.8		-5191.1
ASC_CAR_SP	0.189	0.118	0.122		0.111
ASC_SM_SP	0.451	0.107	0.069		0.108
B_COST	-0.011	-0.013	-0.014		-0.013
B_FR	-0.005	-0.006	-0.006		-0.006
B_TIME	-0.013	-0.023	-4.033	-0.038	-0.028
					0.000
S_TIME		0.017	1.242	0.073	
W1					0.749
W2					0.251
$Prob(\beta > 0)$		8.8%	0.0%		0.0%
χ^2		234.84	199.16		248.6

Introduction to mixtures in discrete choice models – p. 31/42

Latent classes

- Latent classes capture unobserved heterogeneity
- They can represent different:
 - Choice sets
 - Decision protocols
 - Tastes
 - Model structures
 - etc.

Latent classes

$$P(i) = \sum_{s=1}^{S} \Lambda(i|s)Q(s)$$

- $\Lambda(i|s)$ is the class-specific choice model
 - probability of choosing *i* given that the individual belongs to class *s*
- Q(s) is the class membership model
 - probability of belonging to class *s*

Example: residential location

- Hypothesis
 - Lifestyle preferences exist (e.g., suburb vs. urban)
 - Lifestyle differences lead to differences in considerations, criterion, and preferences for residential location choices
- Infer "lifestyle" preferences from choice behavior using latent class choice model
 - Latent classes = lifestyle
 - Choice model = location decisions

Example: residential location

	(Alternative 1)	(Alternative 2)	(Alternative 3)	(Alternative 4)	(Alt. 5)
	Buy Single Family	Buy Multi-Family	Rent Single Family	Rent Multi-Family	
Type of Dwelling :	single house	ap artment	duplex / row house	condominium	
Residence Size :	< 1,000 sq. f t.	500-1,000 sq. f t.	1,500 - 2,000 sq. f t.	< 500 sq. f t.	Move
Lot Size :	< 5,000 sq. f t.	n/a	5,000 - 7,500 sq. f 1.	n/a	out
Parking :	street parking only	street parking only	driveway, no garage	reserved, uncovered	of the
Price or Monthly Rents :	< \$75K	\$50K - \$100K	> \$1,200	\$300 - \$600	Metro
Community Type :	mixed use	mixed use	rural	urban	Area
Housing Mix :	mostly single f amily	mostly multi-f amily	mostly multi-f amily	mostly multi-f amily	
Age of Development :	10-15 years	0-5 years	10-15 years	0 - 5 years	
Mix of Residential Ownership :	mostly own	mostly own	mostly rent	mostly own	
Shops/Services/Entertainment :	community square	basic shops	community square	basic, specialty shops	
Local Parks :	none	yes	none	none	
Bicycle Paths :	none	yes	yes	yes	
School Quality :	very good	very good	f air	f air	
Neighborhood Safety :	average	average	average	average	
Shopping Prices Relative to Avg :	20% more	20% more	same	10% more	
Walking Time to Shops :	20-30 minutes	20-30 minutes	< 10 minutes	10 - 20 minutes	
Bus Fare, Travel Time to Shops :	\$1.00, 15-20 minutes	\$1.00, > 20 minutes	\$0.50, 5 - 10 minutes	\$0.50, < 5 minutes	
Travel Time to Work by Auto :	> 20 minutes	15-20 minutes	15 - 20 minutes	< 10 minutes	
Travel Time to Work by Transit :	> 45 minutes	30-45 minutes	30 - 45 minutes	15 - 30 minutes	

LYTECHNIQUE FEDERALE DE LAUSANNE

Class 1

Suburban, school, auto affluent, more established families

Class 2

Transit, school, less affluent, younger families

Class 3

school, High density, uraffluent, ban activity, older, milies non-family, professionals

Summary

- Logit mixtures models
 - Computationally more complex than MEV
 - Allow for more flexibility than MEV
- Continuous mixtures: alternative specific variance, nesting structures, random parameters

$$P(i) = \int_{\xi} \Lambda(i|\xi) f(\xi) d\xi$$

Discrete mixtures: well-defined latent classes of decision makers

$$P(i) = \sum_{s=1}^{S} \Lambda(i|s)Q(s).$$

Tips for applications

- Be careful: simulation can mask specification and identification issues
- Do not forget about the systematic portion

