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Outline

• Mixtures

• Capturing correlation

• Alternative specific variance

• Taste heterogeneity

• Latent classes
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Mixtures

In statistics, a mixture probability distribution function is a convex
combination of other probability distribution functions.
If f(ε, θ) is a distribution function, and if w(θ) is a non negative
function such that ∫

θ

w(θ)dθ = 1

then

g(ε) =

∫
θ

w(θ)f(ε, θ)dθ

is also a distribution function. We say that g is a w-mixture of f .
If f is a logit model, g is a continuous w-mixture of logit
If f is a MEV model, g is a continuous w-mixture of MEV
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Mixtures

Discrete mixtures are also possible. If wi, i = 1, . . . , n are non
negative weights such that

n∑
i=1

wi = 1

then

g(ε) =

n∑
i=1

wif(ε, θi)

is also a distribution function where θi, i = 1, . . . , n are parameters.
We say that g is a discrete w-mixture of f .
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Example: discrete mixture of normal distributions
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Example: discrete mixture of binary logit models
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Mixtures

• General motivation: generate flexible distributional forms

• For discrete choice:
• correlation across alternatives
• alternative specific variances
• taste heterogeneity
• . . .
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Continuous Mixtures of logit

• Combining probit and logit

• Error decomposed into two parts

Uin = Vin + ξ + ν

i.i.d EV (logit): tractability
Normal distribution (probit): flexibility
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Logit

• Utility:

Uauto = βXauto + νauto

Ubus = βXbus + νbus

Usubway = βXsubway + νsubway

• ν i.i.d. extreme value

• Probability:

Λ(auto|X) =
eβXauto

eβXauto + eβXbus + eβXsubway
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Normal mixture of logit

• Utility:

Uauto = βXauto + ξauto + νauto

Ubus = βXbus + ξbus + νbus

Usubway = βXsubway + ξsubway + νsubway

• ν i.i.d. extreme value, ξ ∼ N(0, Σ)

• Probability:

Λ(auto|X, ξ) =
eβXauto+ξauto

eβXauto+ξauto + eβXbus+ξbus + eβXsubway+ξsubway

P (auto|X) =

∫
ξ

Λ(auto|X, ξ)f(ξ)dξ
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Capturing correlations: nesting

• Utility:

Uauto = βXauto + νauto

Ubus = βXbus + σtransitηtransit + νbus

Usubway = βXsubway + σtransitηtransit + νsubway

• ν i.i.d. extreme value, ηtransit ∼ N(0, 1), σ2
transit =cov(bus,subway)

• Probability:

Λ(auto|X, ηtransit) =
eβXauto

eβXauto + eβXbus+σtransitηtransit + eβXsubway+σtransitηtransit

P (auto|X) =

∫
η

Λ(auto|X, ξ)f(η)dη
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Nesting structure

Example: residential telephone
ASC_BM ASC_SM ASC_LF ASC_EF BETA_C σM σF

BM 1 0 0 0 ln(cost(BM)) ηM 0

SM 0 1 0 0 ln(cost(SM)) ηM 0

LF 0 0 1 0 ln(cost(LF)) 0 ηF

EF 0 0 0 1 ln(cost(EF)) 0 ηF

MF 0 0 0 0 ln(cost(MF)) 0 ηF

Introduction to mixtures in discrete choice models – p. 12/42



Nesting structure

Identification issues:

• If there are two nests, only one σ is identified

• If there are more than two nests, all σ’s are identified

Walker (2001)
Results with 5000 draws..
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NL NML NML NML NML
σF = 0 σM = 0 σF = σM

L -473.219 -472.768 -473.146 -472.779 -472.846

Value Scaled Value Scaled Value Scaled Value Scaled Value Scaled

ASC BM -1.784 1.000 -3.81247 1.000 -3.79131 1.000 -3.80999 1.000 -3.81327 1.000
ASC EF -0.558 0.313 -1.19899 0.314 -1.18549 0.313 -1.19711 0.314 -1.19672 0.314
ASC LF -0.512 0.287 -1.09535 0.287 -1.08704 0.287 -1.0942 0.287 -1.0948 0.287

ASC SM -1.405 0.788 -3.01659 0.791 -2.9963 0.790 -3.01426 0.791 -3.0171 0.791
B LOGCOST -1.490 0.835 -3.25782 0.855 -3.24268 0.855 -3.2558 0.855 -3.25805 0.854

FLAT 2.292
MEAS 2.063

σF 3.02027 0 3.06144 2.17138
σM 0.52875 3.024833 0 2.17138

σ2

F + σ2

M 9.402 9.150 9.372 9.430



Comments

• The scale of the parameters is different between NL and the
mixture model

• Normalization can be performed in several ways
• σF = 0

• σM = 0

• σF = σM

• Final log likelihood should be the same

• But... estimation relies on simulation

• Only an approximation of the log likelihood is available

• Final log likelihood with 50000 draws:
Unnormalized: -472.872 σM = σF : -472.875
σF = 0: -472.884 σM = 0: -472.901
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Cross nesting
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Ubus = Vbus +ξ1 +εbus

Utrain = Vtrain +ξ1 +εtrain

Ucar = Vcar +ξ1 +ξ2 +εcar

Uped = Vped +ξ2 +εped

Ubike = Vbike +ξ2 +εbike

P (car) =

∫
ξ1

∫
ξ2

P (car|ξ1, ξ2)f(ξ1)f(ξ2)dξ2dξ1
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Identification issue

• Not all parameters can be identified

• For logit, one ASC has to be constrained to zero

• Identification of NML is important and tricky

• See Walker, Ben-Akiva & Bolduc (2007) for a detailed analysis
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Alternative specific variance

• Error terms in logit are i.i.d. and, in particular, have the same
variance

Uin = βT xin + ASCi + εin

• εin i.i.d. extreme value ⇒ Var(εin) = π2/6µ2

• In order allow for different variances, we use mixtures

Uin = βT xin + ASCi + σiξi + εin

where ξi ∼ N(0, 1)

• Variance:

Var(σiξi + εin) = σ2
i +

π2

6µ2
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Alternative specific variance

Identification issue:

• Not all σs are identified

• One of them must be constrained to zero

• Not necessarily the one associated with the ASC constrained to
zero

• In theory, the smallest σ must be constrained to zero

• In practice, we don’t know a priori which one it is

• Solution:
1. Estimate a model with a full set of σs
2. Identify the smallest one and constrain it to zero.
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Alternative specific variance

Example with Swissmetro

ASC_CAR ASC_SBB ASC_SM B_COST B_FR B_TIME

Car 1 0 0 cost 0 time

Train 0 0 0 cost freq. time

Swissmetro 0 0 1 cost freq. time

+ alternative specific variance
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Logit ASV ASV norm.

L -5315.39 -5241.01 -5242.10

Value Scaled Value Scaled Value Scaled

ASC CAR 0.189 1.000 0.248 1.000 0.241 1.000
ASC SM 0.451 2.384 0.903 3.637 0.882 3.657
B COST -0.011 -0.057 -0.018 -0.072 -0.018 -0.073

B FR -0.005 -0.028 -0.008 -0.031 -0.008 -0.032
B TIME -0.013 -0.067 -0.017 -0.069 -0.017 -0.071

SIGMA CAR 0.020
SIGMA TRAIN 0.039 0.061

SIGMA SM 3.224 3.180



Taste heterogeneity

• Population is heterogeneous

• Taste heterogeneity is captured by segmentation

• Deterministic segmentation is desirable but not always possible

• Distribution of a parameter in the population
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Random parameters
Ui = βtTi + βcCi + εi

Uj = βtTj + βcCj + εj

Let βt ∼ N(β̄t, σ
2
t ), or, equivalently,

βt = β̄t + σtξ, with ξ ∼ N(0, 1).

Ui = β̄tTi + σtξTi + βcCi + εi

Uj = β̄tTj + σtξTj + βcCj + εj

If εi and εj are i.i.d. EV and ξ is given, we have

P (i|ξ) =
eβ̄tTi+σtξTi+βcCi

eβ̄tTi+σtξTi+βcCi + eβ̄tTj+σtξTj+βcCj

, and

P (i) =

∫
ξ

P (i|ξ)f(ξ)dξ.
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Random parameters

Example with Swissmetro

ASC_CAR ASC_SBB ASC_SM B_COST B_FR B_TIME

Car 1 0 0 cost 0 time

Train 0 0 0 cost freq. time

Swissmetro 0 0 1 cost freq. time

B_TIME randomly distributed across the population, normal
distribution
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Random parameters

Logit RC
L -5315.4 -5198.0

ASC_CAR_SP 0.189 0.118
ASC_SM_SP 0.451 0.107

B_COST -0.011 -0.013
B_FR -0.005 -0.006

B_TIME -0.013 -0.023
S_TIME 0.017

Prob(B_TIME ≥ 0) 8.8%
χ2 234.84
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Random parameters
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Random parameters

Example with Swissmetro

ASC_CAR ASC_SBB ASC_SM B_COST B_FR B_TIME

Car 1 0 0 cost 0 time

Train 0 0 0 cost freq. time

Swissmetro 0 0 1 cost freq. time

B_TIME randomly distributed across the population, log normal
distribution
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Random parameters

[Utilities]

11 SBB_SP TRAIN_AV_SP ASC_SBB_SP * one +

B_COST * TRAIN_COST +

B_FR * TRAIN_FR

21 SM_SP SM_AV ASC_SM_SP * one +

B_COST * SM_COST +

B_FR * SM_FR

31 Car_SP CAR_AV_SP ASC_CAR_SP * one +

B_COST * CAR_CO

[GeneralizedUtilities]

11 - exp( B_TIME [ S_TIME ] ) * TRAIN_TT

21 - exp( B_TIME [ S_TIME ] ) * SM_TT

31 - exp( B_TIME [ S_TIME ] ) * CAR_TT
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Random parameters

Logit RC-norm. RC-logn.

-5315.4 -5198.0 -5215.81

ASC_CAR_SP 0.189 0.118 0.122

ASC_SM_SP 0.451 0.107 0.069

B_COST -0.011 -0.013 -0.014

B_FR -0.005 -0.006 -0.006

B_TIME -0.013 -0.023 -4.033 -0.038

S_TIME 0.017 1.242 0.073

Prob(β > 0) 8.8% 0.0%

χ2 234.84 199.16
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Random parameters
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Random parameters

Example with Swissmetro

ASC_CAR ASC_SBB ASC_SM B_COST B_FR B_TIME

Car 1 0 0 cost 0 time

Train 0 0 0 cost freq. time

Swissmetro 0 0 1 cost freq. time

B_TIME randomly distributed across the population, discrete
distribution

P (βtime = β̂) = ω1 P (βtime = 0) = ω2 = 1 − ω1
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Random parameters

[DiscreteDistributions]
B_TIME < B_TIME_1 ( W1 ) B_TIME_2 ( W2 ) >

[LinearConstraints]
W1 + W2 = 1.0

Introduction to mixtures in discrete choice models – p. 30/42



Random parameters

Logit RC-norm. RC-logn. RC-disc.

-5315.4 -5198.0 -5215.8 -5191.1

ASC_CAR_SP 0.189 0.118 0.122 0.111

ASC_SM_SP 0.451 0.107 0.069 0.108

B_COST -0.011 -0.013 -0.014 -0.013

B_FR -0.005 -0.006 -0.006 -0.006

B_TIME -0.013 -0.023 -4.033 -0.038 -0.028

0.000

S_TIME 0.017 1.242 0.073

W1 0.749

W2 0.251

Prob(β > 0) 8.8% 0.0% 0.0%

χ2 234.84 199.16 248.6
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Latent classes

• Latent classes capture unobserved heterogeneity

• They can represent different:
• Choice sets
• Decision protocols
• Tastes
• Model structures
• etc.
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Latent classes

P (i) =
S∑

s=1

Λ(i|s)Q(s)

• Λ(i|s) is the class-specific choice model
• probability of choosing i given that the individual belongs to

class s

• Q(s) is the class membership model
• probability of belonging to class s
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Example: residential location

• Hypothesis
• Lifestyle preferences exist (e.g., suburb vs. urban)
• Lifestyle differences lead to differences in considerations,

criterion, and preferences for residential location choices

• Infer “lifestyle” preferences from choice behavior using latent
class choice model
• Latent classes = lifestyle
• Choice model = location decisions
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Example: residential location
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Latent lifestyle segmentation

Class 1 Class 2 Class 3
Suburban, school,
auto affluent,
more established
families

Transit, school,
less affluent,
younger families

High density, ur-
ban activity, older,
non-family, profes-
sionals
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Summary

• Logit mixtures models
• Computationally more complex than MEV
• Allow for more flexibility than MEV

• Continuous mixtures: alternative specific variance, nesting
structures, random parameters

P (i) =

∫
ξ

Λ(i|ξ)f(ξ)dξ

• Discrete mixtures: well-defined latent classes of decision
makers

P (i) =

S∑
s=1

Λ(i|s)Q(s).
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Tips for applications

• Be careful: simulation can mask specification and identification
issues

• Do not forget about the systematic portion
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