Dynamic microsimulation of location choices with a quasi-equilibrium auction approach

Ricardo Hurtubia Michel Bierlaire Francisco Martínez

STRC 2012

Outline

- 1) Motivation
- 2) The bid-auction approach to location choice modeling
- 3) Bid-auction framework for microsimulation of location choice (market clearing)
- 4) General framework for a land use model
- 5) Brussels case study (some preliminary results)
- 6) Conclusions

Motivation

- Spatial distribution of agents and activities in a city affects:
 - Travel demand / energy consumption / pollution / social welfare
- Cities are complex systems:
 - Interaction of different markets
 - Many heterogeneous agents
 - Externalities
- Land use models allow to understand and forecast (?) the evolution of cities
- Location choice models are a fundamental element of land use models
- **Microsimulation/agent-based** models are flexible and detailed, making possible to evaluate complex scenarios

Motivation

Approaches to location choice modeling:

- Choice: agents (households and firms) select location of maximum utility as price takers
- **Bid-auction:** real estate goods are traded in auctions where prices and locations are determined by the best bidders

Real estate markets:

- Quasi-unique good: all locations are different
- Inelastic demand: every agent needs to locate somewhere
- ➔ Conflicts are solved through market clearing mechanisms

Motivation

Market clearing can be modeled by:

- Solving an equilibrium problem
 - Aggregated
 - Strong assumptions (supply=demand)
 - Difficult to introduce dynamics
- Simulating individual transactions
 - Computationally expensive
 - Data hungry

Method to simulate market clearing in location choice?

Bid-auction approach to location choice

Why bid-auction?

- Real estate goods (housing, land) are quasi-unique and usually scarce → competition between agents
- Explicit explanation of the price formation process (best bid in an auction)
- Bid prices can be sensitive to scenarios of demand or supply surplus
- Estimation: no price endogeneity

Bid-auction approach to location choice

• B_{hi} : willingness to pay of agent *h* for location *i*.

$$B_{hi} = f(x_h, z_i, \beta)$$

 x_h : characteristics of agent h (household, firm, ...)

 z_i : attributes of location i (housing unit, parcel of land, ...)

• Probability of agent *h* being the best bidder for a location *i* (Ellickson, 1981):

$$P_{h/i} = \frac{\exp(\mu B_{hi})}{\sum_{g \in H} \exp(\mu B_{gi})}$$

Bid-auction approach to location choice

- Price or rent for one location:
 - Deterministic: bid of the winner of the auction
 - Stochastic: expected maximum bid
- r_i : rent/price of *i* (expected value of the maximum bid):

$$r_i = \frac{1}{\mu} \ln \left(\sum_{g \in H} \exp(\mu B_{gi}) \right) + C$$

H: set of bidding agents*C*: unknown constant

Estimation of bid function

NSP-OR

Market clearing for agent-based bid-auction models

Microsimulation with a bid approach

- When bids are simulated we get:
 - Spatial distribution of agents
 - Real estate prices
- But, in order to account for competition between agents for scarce goods, we need market clearing:
 - Through hedonic price models (UrbanSim)
 - Simple but not real market clearing
 - Individual auctions (ILUTE)
 - Expensive in computational terms, requires knowing choicesets
 - Equilibrium (MUSSA, RURBAN)
 - Aggregated approach

The market clearing problem

Joint probability of household *h* occupying location *i*:

$$P(i,h) = P(i \mid h)P(h) = P(h \mid i)P(i)$$

P(h | i) Maximum bid probabilityP(i | h) Maximum surplus (utility) probabilityP(i) Selling probabilityP(h) Locating probability

Re-visiting Equilibrium

- In equilibrium models it's usually assumed that supply (S) equals demand (H) $P(h) = P(i) = 1 \quad \forall h, i \quad \Rightarrow H = S$
 - Possible equilibrium conditions:

$$\sum_{h} P(i,h) \Longrightarrow \sum_{h} P(i \mid h) P(h) = P(i) = 1 \quad \forall i \quad \text{(everything is sold)}$$

$$\sum_{i} P(i,h) \Longrightarrow \sum_{i} P(h \mid i) P(i) = P(h) = 1 \quad \forall h \quad \text{(everyone is located)}$$

Re-visiting Equilibrium

• Market clearing can be achieved by imposing one of the equilibrium conditions and finding prices/bids that produce them

$$\exists r_i : \sum_h P(i \mid h) = 1 \quad \forall i \quad \text{(prices clear the market)}$$

$$\exists b_h : \sum_i P(h \mid i) = 1 \quad \forall h \quad \text{(bids clear the market)}$$

Due to interdependence, these are usually fixed point problems

Re-visiting Equilibrium

- If we have an auction market and the best bidder rule is observed, adjusting prices or bids is equivalent in equilibrium
 - Same spatial distribution of agents
 - Not necessarily same prices (rents or maximum bid)
- Equilibrium implies:
 - aggregation of agents in groups
 - solving complex fixed point problems
 - Assuming that all agents re-locate
- Idea: quasi-equilibrium:

- Periodical location of new and re-locating agents, given exogenous supply
- Assumption: all households looking for a location are located somewhere $P(h)=1 \forall h$
 - Total supply must be greater or equal than total demand $\Rightarrow H \leq S$
 - Not all locations are necessarily used $P(i) \le 1 \quad \forall i$

- No equilibrium →
 - no perfect information (only aggregate supply level and previous prices are observed)
 - No iterative negotiation/bidding
 - No absolute adjustment of bids/prices
- Instead, adjustment of "perception" of agents that goes in the direction of an equilibrium but does not solve it.

- Algorithm (in each period):
 - All agents (*H*) observe the market: prices and supply $(r_i^{t-1}, z_i^{t-1}, S_i)$
 - All gents (simultaneously) adjust their bids, attempting to make their expected number of winning auctions equal to one:

$$\sum_{i \in S} q(h \mid i) = 1$$
 $\forall h$ of being the best bidder for i

- All agents bid at the same time for all locations → prices and location distributions are defined
- The assignment mechanism is an auction → for each location a best bidder and a price is determined

Bid function:
$$B_{hi} = I_h - U_h + V_h(z_i) = V_h(z_i) - b_h$$

• Perceived (expected) location probability:

$$q(h | i) = \frac{\exp(V_h(z_i^t) - b_h^t)}{\sum_{g \in H} \exp(B_{gi}^{t-1})} \approx \exp(V_h(z_i^t) - b_h^t - r_i^{t-1})$$

$$\sum_{i \in S} q(h \mid i) = 1 \implies \widehat{b}_h^t = \ln \left(\sum_{i \in S} \exp \left(V_h(z_i^t) - r_i^{t-1} \right) \right)$$

Advantage: no fixed point, just evaluation of equation \rightarrow it is possible to apply to large populations without excessive computational cost

/

General framework for land use modeling

General framework

General framework (this application)

Case study: Brussels

Area of study

ECOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Area of study

Data

- Data collected for a project financed by the European Union (SustainCity)
 - Census 2001 (aggregated information by zone)
 - Household survey 1999 (~1300 observations)
 - Average transaction prices by commune and 2 types of dwelling (house or apartment) from 1985 to 2008
 - Other geographical, land use databases
- 1267997 households, 1274701 dwellings
- 151 communes
- 4975 zones
- 4 types of dwelling (with average attributes per zone)
 - Isolated house
 - Semi-isolated house
 - Joint house
 - Apartment

Bid function specification

		*			
Parameter	spatial attribute	x	household (hh) attribute		
ASC ₂	-		income level constant (745-1859 Euros)		
ASC3	-		income level constant (1860-3099 Euros)		
ASC4	-		income level constant (3100-4958 Euros)		
ASC ₅	-		income level constant (>4959 Euros)		
B_educ_zone	% of education jobs in zone i	×	dummy for hh's with children		
B_educ_comm	% of education jobs in commune c	×	dummy for hh's with children		
B_house1	dummy for isolated house	×	dummy for hh's with more than 2 people		
B_house2	dummy for semi-isolated house	×	dummy for hh's with more than 2 people		
B_house3	dummy for attached house	×	dummy for hh's with more than 2 people		
B_income_23	% of hh's of income level 2 and 3 in zone i	×	dummy for income level 2 or 3		
B_income_45	% of hh's of income level 4 and 5 in zone i	×	dummy for income level 4 or 5		
B_indu_zone	% of industry jobs in zone i	×	dummy for income level > 3		
B_indu_comm	% of industry jobs in commune c	×	dummy for hh's with active workers		
B_service_zone	$\%$ of service (office and hotel) jobs in $\mathfrak i$	×	dummy for hh's with active workers		
B_shop_comm	% of retail jobs in commune c	×	dummy for hh's with active workers		
B_surf_h	surface of dwelling v	×	dummy for multi-person hh's with inc level > 3		
B_surf_m	surface of dwelling v	×	dummy for multi-person hh's with inclevel $= 3$		
B_trans	public transport $acces_i$ (facilities/km ²)	×	dummy for hh's with 0 cars		
B_trans2	public transport $acces_i$ (facilities/km ²)	×	dummy for hh's with 2 or more cars		
B_univ_comm	% of people with university degree in c	×	dummy for hh's having integrants with univ degree		

Bid function estimation results

	Parameter	Value	Std error	t-test	
	ASC ₂	-0.0496	0.21	-0.24*	
	ASC ₃	-0.442	0.224	-1.97	
	ASC ₄	-0.751	0.181	-4.15	
	ASC ₅	-0.96	0.233	-4.13	
	B_educ_zone	0.269	0.12	2.25	
	B_educ_comm	0.562	0.528	1.07*	
	B house1	0.755	0.0828	9.11	
	B house2	0.935	0.0799	11.7	
	B house3	1.12	0.0717	15.62	
	B income 23	-0.327	0.231	-1.41	
	B income 45	1.91	1.08	1.77*	
	B indu zone	-5.36	2.62	-2.04	
	B indu comm	0.247	0.11	2.25	
	B service zone	0.243	0.0542	4.49	
	B shop comm	3.13	0.458	6.84	
	B surf h	0.00916	0.00197	4.66	
	B surf m	0.00642	0.00124	5.16	
	B trans	0.739	0.0811	9.12	
	B trans2	-0.548	0.0989	-5.55	
	B univ comm	3.11	0.134	23.25	
,	α	1.84	0.708	2.6	
	γ	0.659	0.0505	13.04	
TRANSP-OR	σ	-1.87	0.0182	-102.42	ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

* Parameter not significant at the 95% level

Results

• Change in income distribution (2001-2008)

Results

• Increase in prices (2001 - 2008)

Results

• Evolution of prices (2001 - 2008)

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

Conclusion

- A model for location choice is proposed. Adjustment of agent's preferences goes (partially) in the direction of equilibrium market clearing
- Results show the proposed model is able to forecast the price trend
- Further work considers improving other components of the model and a comparison with UrbanSim

Thank you

