Bid-auction framework for microsimulation of location choice with endogenous real estate prices

Ricardo Hurtubia Francisco Martínez Michel Bierlaire

Motivation

- Land use models
 - Travel demand forecast
 - Policy and project evaluation
- Location choice
 - Preferences of decision makers (willingness to pay)
 - Friction between agents (location conflicts) not always considered
- How are conflicts solved? → market
 - How to introduce this in a location choice model?

(residential) Real estate market

- Relatively scarce goods, almost inelastic demand
- Normally: A household can live in only one dwelling and a dwelling can't be used by more than one household
- Competition for goods implies conflict
- Conflict is solved through price adjustment
 - Changes in bid behavior of agents (bid-auction)
 - Changes in asking price of seller (choice)

interaction/transactions → market clearing (prices)

Motivation - Market clearing

Modeling approaches to solve market clearing:

- Equilibrium (TRANUS, MEPLAN, MUSSA):
 - everyone is located or everything is sold
 - Aggregated
 - Cross sectional (no temporal dimension)
 - Fixed point problem
- Dynamic disequilibrium (DELTA, IRPUD, ILUTE, UrbanSim):
 - Aggregated or disaggregated (partial-eq. or individual transactions)
 - Period-wise models
 - Great variety of approaches (simplified vs expensive)

Market clearing

Re-visiting equilibrium:

• For each good (location) *i* find asking prices r_i such that

$$\sum_{h} H_{h} P\left(i|h, r_{i}, P(i|\overline{h})\right) = S_{i} \quad \forall i$$

• For each household h, find bids B_{hi} such that

$$\sum_{i} S_{i} P\left(h|i, B_{hi}, P(\overline{h}|i)\right) = H_{h} \quad \forall h$$

Supply (households)

Demand (households)

Idea

- Adjustment of price depends on the interaction between demand and supply → change in expected utility and bidding behavior given the "state of the market"
- Adjustment of expectation of agents before they enter the market can be based on the equilibrium approach to the problem.

Proposal: Quasi-equilibrium approach

• Auction market. Probability of agent *h* being best bidder for location *i* (at period *t*):

$$P^{t}(h \mid i) = \frac{\exp(B_{hi}^{t})}{\sum_{g} \exp(B_{gi}^{t})}$$

• Price of location is the expected maximum bid

$$r_i^t = \ln\left(\sum_g \exp(B_{gi}^t)\right)$$

Quasi-equilibrium approach

• Agents bid according to their preferences and their expected utility levels

$$B_{hi}^t = b_h^t + b_{hi}(z_i^t, \beta)$$

• Agents perceive their probability of winning an auction as:

$$q^{t}(h | i) = \frac{\exp(b_{h}^{t} + b_{hi}^{t})}{\sum_{g} \exp(B_{g}^{t})} \approx \exp(b_{h}^{t} + b_{hi}^{t} - r_{i}^{t-1})$$

Quasi-equilibrium approach

• Agents will bid according to their perception of the market conditions: they want to make sure they get a location but they also don't want to over-bid

$$\sum_{i \in S^{t}} q^{t}(h|i) = \sum_{i \in S^{t}} \exp\left(b_{h}^{t} + b_{hi}(z_{i}^{t}, \beta) - r_{i}^{t-1}\right) = 1$$

$$b_h^t = -\ln\left(\sum_{i \in S^t} \exp\left(b_{hi}(z_i^t, \beta) - r_i^{t-1}\right)\right)$$

Quasi-equilibrium approach

Market clearing mechanism:

- After adjusting their perceptions, all active households bid simultaneously for all locations available in the market in a period
- If a household is the best bidder for more than one location, the maximum surplus location is chosen (given r_i)
- Empty locations and unlocated households interact in a new simultaneous auctions
- Repeat until all households are located or all locations are occupied
- move to next period.

Market clearing algorithm*

General framework algorithm*

Case study – Area of study

 151 communes and 4945 zones around Brussels (approx 1.2 million households)

Case study – Data

- Buildings: 4 types, average attributes at zone level (prices at commune level)
- Households: Data from Census (2001, zone level) and a travel survey (2002, ~1300 observations)
 - → Synthetic population

Attribute	levels		
Income level of the household (inc_h)	1 (0-1859 Euros)		
	2 (745-1859 Euros)		
	2 (1860-3099 Euros)		
	4 (3100-4958 Euros)		
	5 (>4959 Euros)		
Household size (hh_size _h)	1,2,3,4,5+		
Number of children (children _h)	0,1,2+		
Number of workers (workers _h)	0,1,2+		
Number of cars (cars _h)	0,1,2,3+		
Number of people with university degree (univ _h)	0,1,2+		

Parameter	spatial attribute	×	household (hh) attribute	Parameter	Value	Std error	t-test
ASC ₂	-		income level 2 constant (745-1859 Euros)	ASC ₂	-0.171	0.083	-2.07
ASC ₃	-		income level 3 constant (1860-3099 Euros)	ASC ₃	-0.461	0.113	-4.1
ASC ₄	-		income level 4constant (3100-4958 Euros)	ASC ₄	2.05	0.374	5.47
ASC ₅	-		income level 5 constant (>4959 Euros)	ASC ₅	2.19	0.385	5.68
β_{house}	dummy for houses (types 1,2 or 3)	×	dummy for hh_size $_h > 2$ and inc $_h > 2$	$\beta_{ m house}$	-0.128	0.0472	-2.7
$\beta_{apartment}$	dummy for apartment (type 4)	×	dummy for hh_size $_h > 2$ and inc $_h > 2$	$\beta_{ m apartment}$	-0.702	0.181	-3.88
β_{surface}	surface of dwelling v in zone i (m ²)	×	logarithm of hh_size _h	β_{surface}	0.002	0.001	2.6
$\beta_{\text{high-inc}}$	% of hh's of income level 4 and 5 in commune c	×	dummy for income $inc_h > 2$	$\beta_{ m high-inc}$	3.97	1.24	3.21
$\beta_{\text{low-inc}}$	% of hh's of income level 1 and 2 in commune \boldsymbol{c}	×	dummy for income $inc_h > 3$	$\beta_{\text{low-inc}}$	-3.94	0.701	-5.62
$\beta_{\rm education}$	density of education jobs in commune c	×	dummy for $univ_h > 0$	$\beta_{ m education}$	0.356	0.127	2.8
β_{industry}	% of industry jobs in commune c	×	dummy for $inc_h > 3$	β_{industry}	-0.562	0.25	-2.25
β_{service}	% of service (office and hotel) jobs in zone <i>i</i>	×	dummy for workers $h > 0$	β_{service}	0.046	0.020	2.31
$\beta_{\rm shopping}$	density of retail jobs in zone <i>i</i>	×	dummy for income $inc_h > 2$	$eta_{ m shopping}$	0.040	0.018	2.24
$\beta_{\rm pubtrans}$	public transport acces _i (facilities/km ²)	×	dummy for $\operatorname{cars}_h = 0$	$\beta_{\rm pubtrans}$	0.257	0.094	2.72
$\beta_{\text{pubtrans2}}$	public transport acces _i (facilities/km ²)	×	dummy for $cars_h > 1$	$\beta_{\text{pubtrans2}}$	-0.249	0.101	-2.46
$\beta_{\text{car-access}}$	car accessibility in zone i (MATSim)	×	dummy for cars _h > 0	$\beta_{\text{car-access}}$	0.007	0.004	1.9*
				α	-8.98	5.82	-1.54*

Hurtubia R. and Bierlaire M. (2012). Estimation of bid functions for location choice and price modeling with a latent variable approach. TRANSP-OR technical report.

NSP-OR

0.421

FÉDÉRALE DE LAUSANNE

3.46

γ

 σ

1.46

Observed and predicted population in 2008

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Variation in average income by commune 2001-2008

• Increase in price vs increase in income

Average real estate price by commune 2001 - 2008

Average real estate price by commune in 2008

Conclusions

- Proposed approach accounts for adjustment of expectations of decision makers
- Individual adjustments allow to implement an agent based model (no need to solve fixed point problem)
- Results follow observed trends in spatial distribution of agents and evolution of prices
- Not considering market clearing produces an underestimation of prices

Thank you

Model with price indicator

Model with price indicator

• Structural equation for prices:

$$r_i = \frac{1}{\mu} \ln \left(\sum_{g \in H} \exp(\mu B_{gi}) \right)$$

• Measurement equation for prices:

$$R_i = a + \gamma \cdot r_i$$

~
$$N(0,\sigma) \Rightarrow f(R_i | r_i) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{R_i - a - \gamma \cdot r_i}{2\sigma^2}\right)$$

Likelihood:

$$L = \prod_{i} \left(\prod_{h \in \mathcal{N}_{h/i}} \left(P_{h/i} \cdot f(R_i \mid r_i) \right)^{y_{hi}} \right)$$

