Bid-auction framework for microsimulation of location choice with endogenous real estate prices

Ricardo Hurtubia Michel Bierlaire Francisco Martínez

STRANSP-DR

Urbanics Termas de Chillán, Chile March 28th 2012

Outline

- 1) Motivation
- 2) The bid-auction approach to location choice modeling
- 3) Estimation of bid-rent functions
- 4) Bid-auction framework for microsimulation of location choice

Motivation – Land use models

- Spatial distribution of agents and activities in a city affects:
 - Travel demand
 - Energy consumption, pollution
 - Social welfare
- Cities are complex systems:
 - Interaction of different markets
 - Many heterogeneous agents
 - Externalities
- Land use models allow to understand and forecast (?) the evolution of cities
- Location choice models are a fundamental element of land use models
- Microsimulation / agent based models are flexible and detailed,

making possible to evaluate complex scenarios

Motivation – Approaches to location choice modeling

- **Choice:** agents (households and firms) select location of maximum utility as price takers
 - Most usual implemented approach in microsimulation
 - Requires prices/rents to be given (usually modeled with a hedonic price model and/or exogenous adjustments)
- **Bid-auction:** real estate goods are traded in auctions where prices and locations are determined by the best bidders
 - Usually implemented in equilibrium models (bids are adjusted so everyone is located somewhere)
 - Prices are endogenous (expected maximum bid)

Motivation – Bid-auction advantages

- Real estate goods (housing, land) are quasi-unique and usually scarce → competition between agents
- Explicit explanation of the price formation process (best bid in an auction)
- Bid prices can be sensitive to scenarios of demand or supply surplus
- Estimation: no price endogeneity (spatial autocorrelation)
- But:
 - Estimates of bid function must reproduce both prices and location distribution
 - Bid-auction is not straightforward to implement in microsimulation framework
 - Detailed data is usually not available

Bid-auction approach to location choice

• B_{hi} : willingness to pay of agent *h* for location *i*.

$$B_{hi} = f(x_h, z_i, \beta)$$

 x_h : characteristics of agent h (household, firm, ...)

 z_i : attributes of location i (housing unit, parcel of land, ...)

• Probability of agent *h* being the best bidder for a location *i* (Ellickson, 1981):

$$P_{h/i} = \frac{\exp(\mu B_{hi})}{\sum_{g \in H} \exp(\mu B_{gi})}$$

Bid-auction approach to location choice

- Price or rent for one location:
 - Deterministic: bid of the winner of the auction
 - Stochastic: expected maximum bid
- r_i : rent/price of i = expected value of the maximum bid:

$$r_i = \frac{1}{\mu} \ln \left(\sum_{g \in H} \exp(\mu B_{gi}) \right) + C$$

H: set of bidding agents *C*: unknown constant

Estimation of bid-rent functions

Estimation of bid-rent functions

- Rosen (1974): Prices as a function of location attributes (hedonic rent model)
- Ellickson (1981): stochastic bid approach, undetermined model → relative prices
- Lerman & Kern (1983): bid approach + observed price is maximum bid → absolute prices
 - Very detailed data is required (individual transaction prices)
 - Assumption: groups of homogeneous bidding agents
 - Validation only regarding rent and marginal willingness to pay for location attributes, not agent location distribution or price forecasting

(Gross, 1988; Gross et al 1990; Gin and Sonstelie, 1992; McMillen 1996; Chattopadhyay 1998; Muto, 2006)

Estimation of bid-rent functions

- Idea:
 - Assume structural relationship between expected outcome of the auction and observed (average) prices
 - Estimate location choice model and price model simultaneously, using observed prices as indicators
- Assumptions:
 - Auction price is a latent variable (the auction itself is a latent process)
 - All agents are potential bidders for all locations

Model with price indicator

NSP-OR

Model with price indicator

• Structural equation for prices:

$$r_i = \frac{1}{\mu} \ln \left(\sum_{g \in H} \exp(\mu B_{gi}) \right)$$

• Measurement equation for prices:

$$R_i = a + \gamma \cdot r_i$$

~
$$N(0,\sigma) \Rightarrow f(R_i | r_i) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{R_i - a - \gamma \cdot r_i}{2\sigma^2}\right)$$

• Likelihood:

$$L = \prod_{i} \left(\prod_{h \in \mathcal{N}_{h/i}} \left(P_{h/i} \cdot f(R_i \mid r_i) \right)^{y_{hi}} \right)$$

- Data collected for a FP7 European Union project (SustainCity)
 - Census 2001 (aggregated information by zone)
 - Household survey 1999 (~1300 observations), no detail on housing attributes
 - Average transaction prices by commune and 2 types of dwelling (house or apartment) from 1985 to 2008
 - Other geographical, land use databases
- 1267997 households, 1274701 dwellings
- 157 communes
- 4975 zones
- 4 types of dwelling (with average attributes per zone)
 - Isolated house
 - Semi-isolated house
 - Joint house
 - Apartment

Bid function specification for location (bid) choice model (Ellickson):

$$\begin{split} B_{h\nu i} &= \beta_{surf} \cdot surf_{\nu i} \cdot \ln(N_h) + \beta_{sup} \cdot Q_i^{sup} \cdot N_h^{sup} + \beta_{house} \cdot \lambda_{\nu i}^{house} \cdot N_h + \\ &\beta_{mid_inc} \cdot I_i \cdot \gamma_h^{mid_inc} + \beta_{high_inc} \cdot I_i \cdot \gamma_h^{high_inc} + \beta_{trans} \cdot Y_i^{trans} \cdot \gamma_h^{cars=0} + \\ &\beta_{trans2} \cdot Y_i^{trans} \cdot \gamma_h^{cars>1} + \beta_{comm} \cdot Y_i^{comm} \cdot \ln(N_h) + \beta_{off} \cdot Y_i^{off} \cdot W_h + \beta_{green} \cdot Y_i^{green} \cdot W_h \end{split}$$

- $surf_{vi}$ is the average surface of a residential unit in buildings type v in zone i. The building types consider 3 types of house (fully-detached, semi-detached and attached) and apartments.
- N_h is the size (number of individuals) of a household.
- W_h is number of active individuals (workers) in a household
- N^{sup}_h is number of persons in the household who achieved a university degree as their maximum education level.
- Q_i^{sup} is percentage of the population in zone i with a superior level education-degree.
- I_i is the average income of zone i (calculated from tax declarations)
- Y_i^{trans} is a measurement of the quality of public transport for zone i (accessibility)

ANSP-OR

Table 1: Estimation results for Brussels									
	Standard Logit			Logit with price indicator					
$\mathbf{Parameter}$	Value	Std err	t-test	Value	Std err	t-test			
β _{surf}	0.00636	0.00261	2.43	0.000311	0.000225	1.38*			
βmid inc	0.0439	0.0111	3.94	-0.00317	0.00717	-0.44*			
Bhigh inc	0.0574	0.0153	3.76	0.0161	0.00998	1.61*			
β_{sup}	0.403	0.108	3.73	0.728	0.0739	9.84			
β _{trans0}	0.408	0.136	3	0.599	0.0849	7.06			
β _{trans2}	-0.532	0.153	-3.48	-0.31	0.0791	-3.91			
Bhouse	0.461	0.0615	7.5	0.0563	0.00702	8.03			
ßcomm	-1.34	0.278	-4.83	-0.0366	0.031	-1.18*			
ßgreen	-0.349	0.0717	-4.86	0.136	0.0201	6.74			
β_{off}	-0.295	0.0931	-3.16	0.0896	0.0413	2.17			
a	-	-	-	-16.4	3.23	-5.08			
γ	-	-	-	1.92	0.229	8.39			
σ	-	-	-	-1.92	0.0225	-85.48			
Final Log-Likelihood		-7011.03		-6387.76 (-7091.13**)					
Likelihood ratio-test		232.44		1478.97 (72.23**)					

*parameters not significant at the 95% level

 ** log-likelihood considering only the choice probabilities

Estimation performed with PythonBiogeme (Bierlaire and Fetiarison ,2010)

Table 2: Estimation results for Brussels									
	Standard Logit				L&K				
$\mathbf{Parameter}$	Value	Std err	t-test	Value	Std err	t-test			
β _{surf}	0.00636	0.00261	2.43	-0.00136	0.000855	-1.59*			
βmid inc	0.0439	0.0111	3.94	0.0194	0.00608	3.19			
β _{high} inc	0.0574	0.0153	3.76	0.0474	0.00796	5.95			
β_{sup}	0.403	0.108	3.73	0.416	0.0669	6.22			
βtrans0	0.408	0.136	3	-1.01	0.0716	-14.1			
β_{trans2}	-0.532	0.153	-3.48	-0.226	0.0887	-2.54			
Bhouse	0.461	0.0615	7.5	0.0167	0.0182	0.92*			
ßcomm	-1.34	0.278	-4.83	-0.768	0.0977	-7.85			
ßgreen	-0.349	0.0717	-4.86	0.286	0.0367	7.78			
Boff	-0.295	0.0931	-3.16	-0.767	0.0533	-14.38			
μ	-	-	-	1.66	0.0173	95.74			
Final Log-Likelihood		-7011.03		-7569.6	-7569.645 (-11813.1**)				
Likelihood ratio-test		232.44		1478	1478.97 (72.23**)				

*parameters not significant at the 95% level

** log-likelihood considering only the choice probabilities

NSP-OR

Estimation performed with PythonBiogeme (Bierlaire and Fetiarison ,2010)

• Prices per commune and type (% error) (over estimation dataset)

• Prices (over estimation dataset)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

• Prices (over estimation dataset)

• Prices (over estimation dataset)

• Prices per commune and type (% error) (over full supply for 2001)

• Number of people per commune (% error)

• Number of people with univ degree per commune (% error)

• Number of households with 2+ cars (% error)

• Number of households with 0 cars (% error)

Discussion

- The proposed estimation method finds estimates that reproduce the location distribution of agents and the average market prices of dwellings better than other methods
- Proposed method requires less detailed data → more suitable for extensive land use models
- Well estimated bid functions (willingness to pay) allow to generate a good forecast of the transaction prices, without the need of hedonic price models → this helps if we want to microsimulate using a bid approach

Bid-auction framework for microsimulation of location choice

Microsimulation with a bid approach

- When bids are simulated and we get:
 - Spatial distribution of agents
 - Real estate prices
- But, in order to account for competition between agents for scarce goods, we need market clearing
 - Through hedonic price models (UrbanSim)
 - Simple but not real market clearing
 - Individual auctions (ILUTE)
 - Expensive in computational terms
 - Equilibrium (MUSSA)
 - Aggregated approach

The market clearing problem

Joint probability of household *h* occupying location *i*:

$$P(i,h) = P(i \mid h)P(h) = P(h \mid i)P(i)$$

P(h | i) Maximum bid probabilityP(i | h) Maximum surplus (utility) probabilityP(i) Selling probabilityP(h) Locating probability

Re-visiting Equilibrium

• In equilibrium models it's usually assumed that supply (S) equals demand (H)

$$P(h) = P(i) = 1 \quad \forall h, i \quad \Rightarrow H = S$$

• Possible equilibrium conditions:

$$\sum_{h} P(i,h) \Longrightarrow \sum_{h} P(i \mid h) P(h) = P(i) = 1 \quad \forall i \quad \text{(everything is sold)}$$

$$\sum_{i} P(i,h) \Longrightarrow \sum_{i} P(h \mid i) P(i) = P(h) = 1 \quad \forall h \quad \text{(everyone is located)}$$

Re-visiting Equilibrium

• Market clearing can be achieved by imposing one of the equilibrium conditions and finding prices/bids that produce them

$$\exists r_i : \sum_h P(i \mid h) = 1 \quad \forall i$$
 (prices clear the market)

$$\exists b_h : \sum_i P(h \mid i) = 1 \quad \forall h \quad \text{(bids clear the market)}$$

Due to interdependence, these are usually fixed point problems

Re-visiting Equilibrium

- If we have an auction market and the best bidder rule is observed, adjusting prices or bids is equivalent in equilibrium
- When market conditions change (supply, demand, etc) utility levels of the decision makers have to be adjusted, this is reflected in the level of the prices or bids

- Periodical location of new and re-locating agents, given exogenous supply
- Assumption: all households looking for a location are located somewhere $P(h)=1 \forall h$
 - Total supply must be greater or equal than total demand $\Rightarrow H \leq S$
 - Not all locations are necessarily used $P(i) \le 1 \quad \forall i$

- No equilibrium →
 - no perfect information (aggregate supply, previous prices)
 - No iterative negotiation/bidding
 - No absolute adjustment of bids/prices
- Instead, adjustment of "perception" of agents that goes in the direction of an equilibrium but does not solve it.

- Algorithm (in each period):
 - All agents (*H*) observe the market: prices and supply $(r_i^{t-1}, z_i^{t-1}, S_i)$
 - All gents (simultaneously) adjust their bids, attempting to make their expected number of winning auctions equal to one:

$$\sum_{i \in S} q(h \mid i) = 1$$
 $\forall h$ of being the best bidder for i

- All agents bid at the same time for all locations → prices and location distributions are defined
- The assignment mechanism is an auction → for each location
 a best bidder and a price is determined

Bid function: $B_{hi} = I_h - U_h + V_h(z_i) = V_h(z_i) - b_h$

• Perceived probability:

$$q(h \mid i) = \frac{\exp\left(V_h(z_i^t) - b_h^t\right)}{\sum_{g \in H} \exp\left(B_{gi}^t\right)} \approx \exp\left(V_h(z_i^t) - b_h^t - r_i^{t-1}\right)$$
$$\sum_{i \in S} q(h \mid i) = 1 \quad \Rightarrow \hat{b}_h^t = \ln\left(\sum_{i \in S} \exp\left(V_h(z_i^t) - r_i^{t-1}\right)\right)$$

Advantage: no fixed point, just evaluation of equation \rightarrow it is possible to apply to large populations without excessive computational cost

General framework

Market clearing

Some preliminary results

• Average prices per year

- Average price growth: BID: 50%, HEDONIC: 7%

• Observed average prices per commune

• Average price growth :108%

Advantages

- Agents have an individual behavior but they relate to a "higher level" market mechanism through the utility level adjustment and the simultaneous auction.
- Quasi-equilibrium :

ANSP-OR

- Demand is not cleared: utility adjustment does NOT assure allocation
- Supply is not cleared
- System tends to equilibrium but does not clear
- Adjustment of utility levels instead of prices allow to
 - Explain price formation (no need for hedonic price models)
 - Detect all agents utility levels, including those not active

in the market, triggering future re-location

Thank you

42/38

Main assumptions of the general framework

- Auction market
- Agents adjust their utility level (individually in each period)
 - to ensure location (ex-ante expectations)
 - given market conditions: previous period rents, current supply
- Time lag:
 - In production of real estate goods:
 - In perception of attributes of locations (non-instantaneous)
- Simultaneous (macro level) bid of all agents for all locations
 - Location (best bidder) distributions and expected rents (Ri).
 - No iterative transactions.
 - Computationally simpler than transaction-specific price clearing
- Microsimulation:
 - Actual allocation following macro distributions (simulation of auctions)
 - Rents at micro level (ri)

