

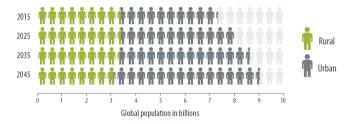
Human 4.0: the influence of digitalization on human beings

Mathematical modeling of human behavior: from data to applications

Michel Bierlaire Marija Nikolic

November 21, 2017

Data revolution



From data to knowledge

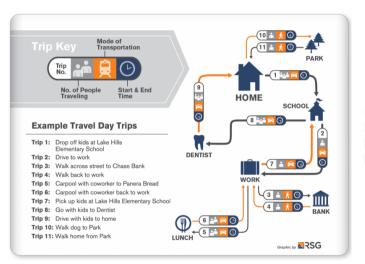
Urbanization

- 1950: 30% of the population lives in cities
- 2014: 54% of the population lives in cities

Source: UN World Urbanization Prospects: 2011 Revision

Smart city: Application of IoT

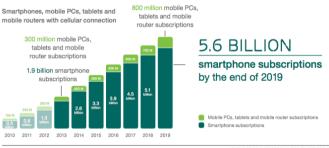
Challenges


- Climate change
- Energy consumption and pollution
- Increased traffic and congestion

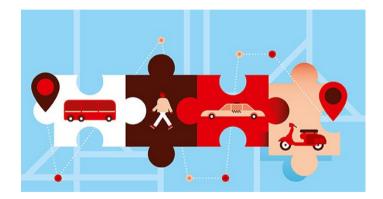
Solution

- Data availability
- Networked technologies

Transportation and mobility


Traditional data sources: Travel surveys

Drawbacks: Biased response No response Erroneous reporting


Modern data sources: Smartphones

NOVEMBER 2013 ERICSSON MOBILITY REPORT 7

From smartphone data to transportation mode detection

Transportation mode detection: Applications

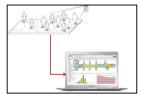
Pedestrian movements

Congestion

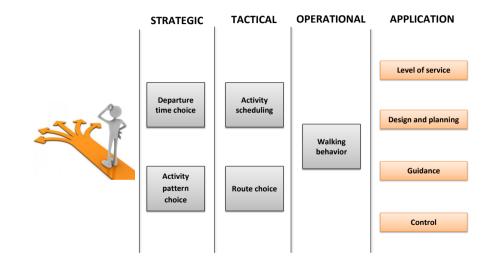
Research challenges

- Understand, describe and predict
- Optimization of current infrastructure and operations
- Efficient planning and management of future pedestrian facilities

Data sources


Survey

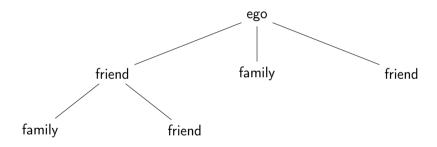
Counts



Wireless technologies

Automated detection and tracking

Models and applications


An example: reconstructing actual itineraries

Nokia data collection campaign

- Funding source: Nokia Research Center (NRC) at EPFL.
- Participants: About 185.
- Since: September 2009.
- Phone: Nokia N95.
- Collaborators: NRC Lausanne, IDIAP (Switzerland).

Recruitment

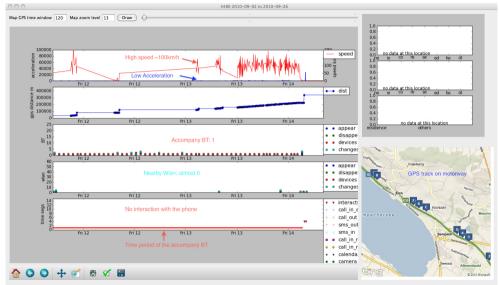
Snow ball sampling

Participants

- About 185 participants.
- Mostly from Lausanne area.
- $\bullet~\sim 1/3$ females.
- \bullet < 1/4 students.

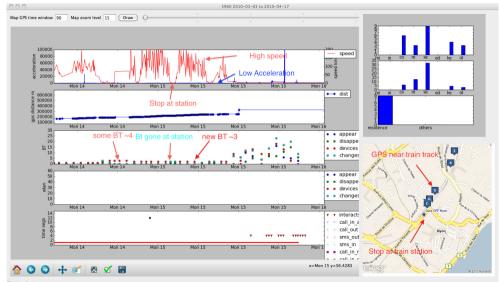
Privacy and security

- Data is owned by participants. They can delete their data from DB A.
- The campaign is permitted and controlled by an ethical committee.
- Nokia and authorized research partners (in CH) get access to the data.

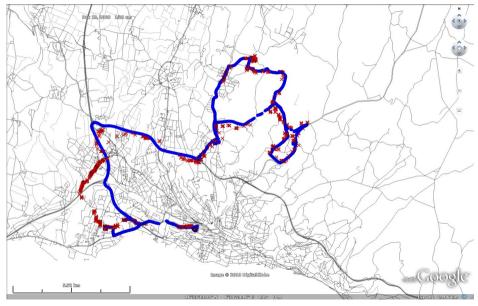

It took ONE YEAR for EPFL to get data access (although data had already been in Nokia's databases).

Data volume

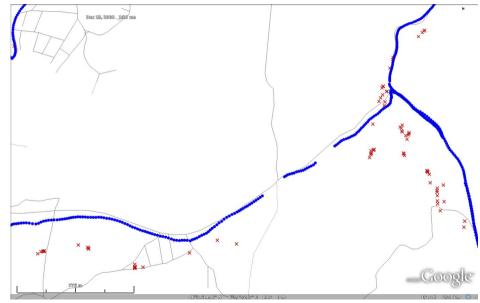
 \sim 150k-entries/100MB of data per user per month


Number of GPS points	11,531,652
Number of calls	247,448
Duration of calls	6,903h
Number of sms	179,358
Number of video made	3,890
Number of pictures taken	54,537
Number of unique BT	543,517
Number of unique WIFI	572,910
Number of unique cell towers (63 countries)	100,505
Number of unique cell towers (CH)	28,945
Number of acceleration samples	1,344,198
Number of application events captures	8,280,554
Number of phone book entries	115,134

Mobility patterns: car


This is a demo

Mobility patterns: train



This is a demo

Issues

Issues

Issues

- Low data collection rate to save battery (every 10 seconds)
- Inaccuracy due to technological constraints
- Smartphone carried in bags, pockets: weaker signal
- Map matching algorithms do not work with this data

Conclusions

SWOT

Strengths

- Pervasive
- Non intrusive

Weaknesses

- Data \neq information \neq decisions
- Big data \neq useful data

Opportunities

- Your phone at your service
- Your phone must understand your preferences

Threats

- Privacy
- Biases