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Travel demand forecasting at SBB – big picture
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 SBB is currently developing a multimodal and microscopic transport model 

as an extension of the existing rail model

 Model requirements:

• ability to simulate long-term forecasting scenarios (2040+)

• representation of transport modes that are competing with the railway

• door-to-door simulation of travel (e.g. access to train stations)

• future transport modes (e.g. autonomous vehicles and ridesharing 

services from and to the rail stations)

• detailed representation of demographic shifts and disruptive policies

 Pioneers in this field, need for more research on various topics
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SIMBA MOBi: microscopic travel simulation of Switzerland
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MOBi.plans’ output: individual full-day plans
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MOBi.Plans: microscopic travel demand
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 A sequence of steps to construct individual day plans
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EPFL Research – Model extensions
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Ownership model – current approach

• Individual-level DCM (MNL) with 10 alternatives:

• Individual-level input features from travel survey 
data – manual specification (arbitrary utility 
functions)

GA Regional ticket Half fare RT + HF None

Car 1 2 3 4 5

No-car 6 7 8 9 10

Mobility resources in Switzerland in 2015, Danalet & Mathys (STRC2018)



Improvements

1. Data
▪ Augment travel survey with network-level data - individual, 

household, zonal, and canton level input features 

2. Structure
▪ Sequential individual-household-individual decision 

structure

3. Machine learning
▪ Assisted specification DCMs using Ensemble Learning (EL)



Data

Augmenting traditional travel surveys with network-level data for predicting ownership of

mobility instruments: A case study of Switzerland (ISCTSC2020, submitted)



Structure
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Machine learning - Decision trees
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Ensemble learning



Ensemble learning



Assisted specification approach

1. Train ensemble learning model on dataset

2. Investigate structure of ensemble learning 
model, using it to inform utility specifications for 
DCM

3. Simplify DCM by combining parameters where 
necessary 



Assisted specification inferences

• Feature importances – sum gain over all splits for 
each features

• Feature interactions – sum gain for each 
hierarchical combination of 𝑛 features

• Non-linear interactions of input features –
investigate distribution of split values over all splits 
for each feature

Weak teachers: Assisted specification of discrete choice models using ensemble learning

(hEART 2019)



Parking cost – household car ownership



Current results – Joint estimation

Model Features Fit time CEL

DCM 33 ~10 hours -1.54

ML (original data) 33 ~5 min - 1.48

ML (new data) 97 ~20 min -1.44



Current results – Sequential estimation

Model
ML DCM

Fit time CEL Fit time CEL

Individual DL 0:46 -0.307 3:22 -0.354

Household car 4:10 -0.84 1:04:03 -0.87

Individual PT 9:19 -1.21 4:04:30 -1.08



Summary

• SBB MOBi.Plans – Activity-based microscopic travel 
demand

• A sequence of steps to construct individual day plans
• Combination of DCMs and Simulation

• Current work to make improvements to:
• Mobility ownership model
• Tour based mode-choice
• Joint estimation of destination and mode choice

• Mobility ownership model improvements
• Data – Augmented with network level data
• Structure – sequential modelling structure
• Machine learning – assisted specification



Further work

• Finalise DCM utility specifications for sequential 
model

• Validate sequential DCM on synthetic population -
MOBi.synpop

• Proceed to further extensions:
• Tour-based mode-choice

• Joint destination/mode-choice
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