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Why maximum likelihood estimation (MLE)?

• MLE is for example used to estimate the parameters of discrete 
choice models
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• For each individual n, every alternative i has an associated utility:

Attributes of the alternative / 
socioeconomic characteristics 

of the indivudal

random error term

parameters to be estimated
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Why maximum likelihood estimation (MLE)?



• For each individual n, every alternative i has an associated utility:

• Behavioral assumption: the individual chooses the alternative with 
the highest utility
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deterministic part
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Why maximum likelihood estimation (MLE)?



• Data: observed choices 𝑦!" (= 1 if alternative i was chosen, else = 0)
• Find parameters 𝛽# such that the likelihood of this outcome is 

maximized
• Log-Likelihood function: 

where
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Why maximum likelihood estimation (MLE)?



Why simulated MLE?

• Choice probabilities are in general complex functions with no closed 
analytic expression 
• One way to circumvent this issue: 

§ Simulate R scenarios, utilities become deterministic:

§ Let 𝜔!"$ be the choice variables

§ Approximated probabilities: 

Draw from distribution

Meritxell Pacheco: A general framework for the integration of complex choice models into mixed integer optimization (2020)
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Simulated MLE as an MILP

• Objective: max Log-Likellihood 

max sim. Log-Likelihood

max 

Lurkin, Fernandez and Bierlaire: A MILP formulation for the maximum likelihood estimation of continuous and discrete 
parameters in choice models (2018)
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• Constraints: 
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Simulated MLE as an MILP



Why decomposition?

• Problem: Simulation increases problem size by solving many scenarios
only small instances can be solved in reasonable time [1]

• To solve large MILPs efficiently we consider decomposition methods
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[1] Pacheco: Integrating advanced discrete choice models in mixed integer linear optimization (2021)
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The Benders decomposition

candidate
solution 𝛽

optimality cuts
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Compute candidate solution
for parameters 𝛽

Master Problem (LP)

Sub-Problem (LP)

Totally unimodular 
when 𝛽 is fixed



• Difficulty:

Simply adding the constraint                         does not work in our case
because of the non-linearity of the problem
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The Benders decomposition



• Constraints: 
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Non-linear!

Goal: linear in 𝜷𝒌

The Benders decomposition



• We design a quasi-linearization:
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The Benders decomposition



• Dataset: RP data on mode choice, Netherlands, 1987
• Simple binary logit model:

choice between two modes – car and rail

• Compare decomposition vs. undecomposed MILP
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Application to a mode choice problem
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• First conjecture: gaps are caused by log-linearization in MSLE
• Remedy: apply decomposition to continuous pricing problem (CPP)
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Almost equivalent problem structure, no log-linearization

Application to a mode choice problem



• Continuous pricing problem:
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Application to a continouos pricing problem
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Application to a continouos pricing problem



Large number of draws (MSLE)
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Ideas for future work

• Improving Benders:
• Piece-wise linearization
• Convex-quadratic formulation

• Column generation methods

• Combined column generation + Benders approach
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