Fast Algorithms for (Capacitated) Continuous Pricing with Discrete Choice Demand Models

Tom Haering Robin Legault Michel Bierlaire

Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne

33rd European Conference on Operational Research, Copenhagen June 30 - July 3, 2024

TH, RL, MB (EPFL) [Fast Algorithms for the \(capacitated\) CPP](#page-34-0) July 1, 2024 1/35

Outline

• [Introduction](#page-1-0)

- ' [Methodology](#page-7-0)
- ' [Experimental Results](#page-20-0)
- ' [Conclusions](#page-32-0)

K ロ K K 伊 K K 君 K K 君 K 〈君 K 〈君〉 ④ Q ⊙

The Choice-based Pricing Problem (CPP)

CPP

- Supplier offers J products for sale. Goal: determine optimal **price** for each product to maximize total revenue.
- There always exists an **opt-out** option (competition, etc).
- Demand for each product is modeled using a **discrete choice model** (DCM).

DCM

 \bullet For every costumer n and product i a stochastic utility U_{in} is defined, which depends on socio-economic characteristics and attributes of the products (e.g. the price).

The Choice-based Pricing Problem (CPP)

Pre-estimated DCM

 \bullet Utility of alternative *i* for customer *n*:

$$
U_{in} = V_{in} + \beta_{in}^{p} p_{i} + \varepsilon_{in}
$$

- \bullet V_{in} : deterministic utility (exogenous)
- β_{in}^p : price sensitivity parameter (exogenous)
- p_i : price of alternative *i* (endogenous)
- \bullet ε_{in} : stochastic error term

Objective function

• maximize expected revenue =
$$
\sum_{n} \sum_{i} P_n(i) p_i
$$

The Choice-based Pricing Problem (CPP)

 \bullet Probability that customer n chooses alternative i:

$$
P_n(i) = \mathbb{P}(U_{in} \geq U_{jn} \ \forall j \in J)
$$

• Logit ($\varepsilon_{in} \sim$ i.i.d. Gumbel(0, 1)):

$$
P_n(i) = \frac{e^{V_{in}}}{\sum_{j \in C_n} e^{V_{jn}}}
$$

• Mixed Logit $(\text{Logit} + \beta_k \sim F(\beta_k | \theta))$:

$$
P_n(i) = \int \frac{e^{V_{in}(\beta_{kn})}}{\sum_{j \in C_n} e^{V_{jn}(\beta_{kn})}} f(\beta_k|\theta) d\beta_k
$$

TH, RL, MB (EPFL) [Fast Algorithms for the \(capacitated\) CPP](#page-0-0) July 1, 2024 5/35

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 그룹 및 10 000

Literature

Integrating Logit into...

' Revenue Management [\(Shen and Su, 2007;](#page-45-0) [Korfmann, 2018\)](#page-44-0)

Integrating **Nested Logit** into...

- ' Toll setting [\(Wu et al., 2012\)](#page-45-1)
- Pricing [\(Gallego and Wang, 2014;](#page-43-0) Müller et al., 2021)

Integrating **Mixed Logit** into...

- ' Toll setting [\(Gilbert et al., 2014\)](#page-43-1)
- ' Pricing [\(Marandi and Lurkin, 2023;](#page-44-2) [van de Geer and den Boer, 2022\)](#page-45-2)

국 (국)

 200

Literature

Integrating general DCM into optimization problems

- ' Formulation as a mixed-integer-linear program (MILP) using Monte-Carlo simulation [\(Paneque et al., 2021\)](#page-44-3)
- ' Heuristic based on Lagrangian decomposition and grouping of scenarios [\(Paneque](#page-44-4) [et al., 2022\)](#page-44-4)
- Exact method based on spatial Branch-and-Benders decomposition (B&BD) $+$ low-dimensional polynomial algorithm (BEA) (without capacity constraints) [\(Haering](#page-43-2) [et al., 2023\)](#page-43-2)

New contribution:

• Extend BEA to deal with **capacity constraints**, develop **heuristic** (with and without capacities) to handle higher dimensions, use it to speed up B&BD.

지갑 지역 지역 지역에 지역에 지갑 시

Outline

\bullet [Introduction](#page-1-0)

- [Methodology](#page-7-0)
- ' [Experimental Results](#page-20-0)
- ' [Conclusions](#page-32-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ [할 게 이익어

Base layer: Monte Carlo Simulation

• Simulate R scenarios (draws), each with deterministic utilities U_{int} :

$$
U_{inr} = V_{in} + \beta_{inr}^{p} p_i + \varepsilon_{inr} \quad \forall n \in \mathcal{N}, i \in C_n, r \in \mathcal{R}
$$

= $c_{inr} + \beta_{inr}^{p} p_i$ $\forall n \in \mathcal{N}, i \in C_n, r \in \mathcal{R}$

EPFL

 298

- 이 국내 국

4 0 8

 $\mathcal{A} \leftarrow \mathcal{B} \rightarrow \mathcal{A} \leftarrow \mathcal{B} \rightarrow \mathcal{A} \leftarrow \mathcal{B}$

Breakpoints: Illustration

- \bullet 1 customer, 1 controlled price $+$ opt-out
- Breakpoint \overline{p}_1 :

Breakpoints: Illustration

- \bullet 3 customers, 1 controlled price $+$ opt-out
- Numbers: how many customers are captured

 298

격분

 \rightarrow

Breakpoint Exact Algorithm (BEA) [\(Haering et al., 2023\)](#page-43-2)

Adding capacity constraints

- ' Evaluating the objective function is not more difficult (assume exogenous priority queue).
- ' Need to compute breakpoints from not only the utility of the best alternative so far but from all alternative's utilities, due to people no longer always choosing highest utility alternative.
	- \implies Customers may switch from any of the previously introduced alternatives.

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{B} \oplus \mathcal{B}$

ЯРЯ

[Methodology](#page-7-0) [Extending the BEA](#page-12-0)

Breakpoint Exact Algorithm with Capacities (BEAC)

Breakpoint Heuristic Algorithm (BHA)

Coordinate descent

BHA extension via Iterated Local Search (ILS)

Escape local optima

Guiding an exact method using the heuristic solution

- Goal is to improve exact spatial Branch & Benders algorithm.
- ' Main way to speed up a Branch and Bound algorithm is to improve the bounds.
- ' Heuristic solution provides strong upper bound (initial feasible solution) \rightarrow Reduces the number of nodes in the tree.
- Improve **lower bounds**: Valid inequalities.

Valid inequalities

Breakpoints only work if everything but one price is fixed. But...

For each simulated customer (n, r) :

- **minimal breakpoint** \check{p}^{nr}_i (assuming strongest competition)
- **maximal breakpoint** \hat{p}_i^{nr} (assuming weakest competition)

$$
p_i \leq \check{p}_i^{nr} \qquad \Longrightarrow (n, r) \text{ is guaranteed to select } i \qquad \Longrightarrow \omega_{inr} \geq 1
$$
\n
$$
p_i \geq \hat{p}_i^{nr} \qquad \Longrightarrow (n, r) \text{ is guaranteed to not select } i \qquad \Longrightarrow \omega_{inr} \leq 0, \eta_{inr} \leq 0
$$

 \triangleright \rightarrow \exists \rightarrow

- 그러 보기

 Ω

Improving bounds on prices

We can consider:

$$
\check{p}_i := \min_{n,r} \check{p}_i^{nr}
$$

$$
\hat{p}_i := \max_{n,r} \hat{p}_i^{nr}
$$

knowing that:

$$
p_i > \hat{p}_i \implies \text{no one chooses alternative } i
$$

 $p_i < \check{p}_i \implies$ everyone chooses alternative *i* $(if it is in their choice set)$

TH, RL, MB (EPFL) [Fast Algorithms for the \(capacitated\) CPP](#page-0-0) July 1, 2024 19/35

K ロ > K 個 > K ヨ > K ヨ > (ヨ = K) 9,00

Improving bounds on prices

We can also say:

 $p_i > m$ -th highest $\hat{p}_i^{nr} \implies$ at most m simulated customers choose alternative i

 $p_i < m$ -th lowest $\breve{p}_i^{nr} \implies$ at least m simulated customers choose alternative i

- Allows to adapt bounds to aim at specific outcomes.
- ' We will assume that for each product there should be at least one customer/scenario in which a product is chosen, as else it could be removed from the set of offered products.
- $\bullet \implies$ Replace p_i^U by \hat{p}_i whenever $\hat{p}_i < p_i^U$.

K ロ > K 個 > K 로 > K 로 > (로)= 19 Q Q

Outline

- \bullet [Introduction](#page-1-0)
- ' [Methodology](#page-7-0)
- ' [Experimental Results](#page-20-0)
- ' [Conclusions](#page-32-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ [할 게 이익어

Case Study

Parking space operator [\(Ibeas et al., 2014\)](#page-43-3)

- ' Alternatives: Paid-Street-Parking (PSP), Paid-Underground-Parking (PUP) and Free-Street-Parking (FSP).
- Optimize prices for PSP and PUP, FSP is the **opt-out** alternative.
- ' Socio-economic characteristics: trip origin, vehicle age, driver income, residence area.
- ' Product attributes: access time to parking, access time to destination, and parking fee (price).
- ' Add more alternatives by increasing access time to destination.
- Choice model is a Mixed Logit, $\beta_{\text{fee}}, \beta_{\text{time}}$ parking $\sim \mathcal{N}(\mu, \sigma)$.

(로) - 4 로) - 로(로) - 40 G

Table 1: MILP vs. BEAC in the capacitated case

Table 2: BHA and ILS vs. MILP and BEAC in the capacitated case

TH, RL, MB (EPFL) [Fast Algorithms for the \(capacitated\) CPP](#page-0-0) July 1, 2024 24/35

TH, RL, MB (EPFL) [Fast Algorithms for the \(capacitated\) CPP](#page-0-0) July 1, 2024 25/35

K ロ X K 御 X K 君 X K 君 X 〈君 X 〈君〉 ① 9.0 ◇

Table 3: BHA and ILS vs. B&BD and BEA in the uncapacitated case

K ロ ▶ K 個 ▶ K ヨ ▶ K ヨ ▶ (ヨ) = 1 9 9 0

Table 4: BHA vs. B&BD solution quality

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 그리도 YO Q @

TH, RL, MB (EPFL) [Fast Algorithms for the \(capacitated\) CPP](#page-0-0) July 1, 2024 28 / 35

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ [할 게 이익어

Table 5: B&BD with Guidance - 10% gap

K ロ ▶ K 個 ▶ K ヨ ▶ K ヨ ▶ (ヨ) = 1 9 9 0

Table 6: B&BD with Guidance - 5% gap

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 그리도 YO Q @

Table 7: B&BD with Guidance - 1% gap

[Fast Algorithms for the \(capacitated\) CPP](#page-0-0) July 1, 2024 31 / 35

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 그리도 YO Q @

Unfair comparison to a Mixed-Logit-specific algorithm

Table 8: Runtime (in seconds) against CoBiT [\(Marandi and Lurkin, 2023\)](#page-44-2) for the uncapacitated CPP.

TH, RL, MB (EPFL) [Fast Algorithms for the \(capacitated\) CPP](#page-0-0) July 1, 2024 32 / 35

∢ 토 ▶ (토)님 (9) ٩, ٩

Outline

- \bullet [Introduction](#page-1-0)
- ' [Methodology](#page-7-0)
- ' [Experimental Results](#page-20-0)
- ' [Conclusions](#page-32-0)

K ロ K K 伊 K K 君 K K 君 K 〈君 K 〈君〉 ④ Q ⊙

Conclusions

With capacity constraints

- Exact: BEAC ≈ 20 times faster than MILP (for two prices or less).
- ' Heuristic: BHA up to 5000x times faster than BEAC (especially in high dim).

Without capacity constraints

- Heuristic: BHA outspeeds other approaches by factors $\geq 10^6$ but can get stuck locally.
- Exact: Using the solution of the BHA together with valid inequalities, we can speed up the exact spatial B&BD algorithm by $\approx 20\%$ (more in the beginning).

Future work

Pricing

- ' Assortment optimization on top of pricing.
- ' Could add any constraints for BEA / BHA since they only evaluate objective function.
- ' Improve escaping local optima.

Extension to other optimization problems

- ' Facility location, Airline scheduling and fleet assignment.
- ' Maximum likelihood estimation (utility depending on multiple parameters)
	- \cdot B&BD \checkmark
	- ' BEA ✘
	- BHA \vee \rightarrow Tradeoff between large R and optimality gap. Does not require linearity in β .

Appendix - Utility parameters reported in [\(Ibeas et al., 2014\)](#page-43-3)

TH, RL, MB (EPFL) [Fast Algorithms for the \(capacitated\) CPP](#page-0-0) July 1, 2024 1/11

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 그리도 YO Q @

MILP formulation [\(Paneque et al., 2021\)](#page-44-3)

$$
\max_{p,\omega,U,h} \frac{1}{R} \sum_{r \in \mathcal{R}} \sum_{n \in \mathcal{N}} \sum_{i \in C_n} p_i \omega_{inr}
$$
\n
\ns.t.\n
$$
\sum_{i \in C_n \cup \{0\}} \omega_{inr} = 1 \qquad \forall n \in \mathcal{N}, r \in \mathcal{R} \quad (\mu_{nr})
$$
\n
$$
h_{nr} = c_{0nr} \omega_{0nr} + \sum_{i \in C_n} U_{inr} \omega_{inr}
$$
\n
$$
h_{nr} \ge c_{0nr} \qquad \forall n \in \mathcal{N}, r \in \mathcal{R} \quad (\zeta_{nr})
$$
\n
$$
h_{nr} \ge U_{inr} \qquad \forall i \in C_n, n \in \mathcal{N}, r \in \mathcal{R} \quad (\alpha_{0nr})
$$
\n
$$
U_{inr} = c_{inr} + \beta_p^{in} p_i \qquad \forall i \in C_n, n \in \mathcal{N}, r \in \mathcal{R} \quad (\kappa_{inr})
$$
\n
$$
\omega \in \{0, 1\}^{(J+1)NR}
$$
\n
$$
p \in [p_1^L, p_1^U] \times \ldots \times [p_J^L, p_J^U]
$$
\n
$$
U, h \in \mathbb{R}^{JNR}, \mathbb{R}^{NR}
$$

TH, RL, MB (EPFL) [Fast Algorithms for the \(capacitated\) CPP](#page-0-0) July 1, 2024 2/11

K 로 K K 로 K 로 로 비 > 9 Q @

Results BEA

K ロ K K 伊 K K ミ K K モ K モ ミ ヨ ウ Q Q へ

Breakpoint Exact Algorithm (BEA) [\(Haering et al., 2023\)](#page-43-2)

Algorithm 1: Breakpoint Exact Algorithm (BEA) to solve the CPP

Result: optimal solution p^* and revenue o^* for CPP.

 $p_j^* \leftarrow 0 \quad \forall j \in \{1, \ldots, J\}$ $o^* \leftarrow 0$

for s in S do

$$
p_{s_j} \leftarrow 0 \quad \forall j \in \{1, ..., J\}
$$
\n
$$
h_{nr}^{s_1} \leftarrow c_{0nr} \quad \forall (n, r) \in \mathcal{N} \times \mathcal{R}
$$
\n
$$
\eta_{nr} \leftarrow 0 \quad \forall (n, r) \in \mathcal{N} \times \mathcal{R}
$$
\n
$$
(\hat{\rho}, \hat{\delta}) \leftarrow \text{enumerate}(s, p, h^{s_1}, \eta, 1)
$$
\n
$$
\text{if } \hat{\delta} > o^* \text{ then}
$$
\n
$$
p^* \leftarrow \hat{\rho};
$$
\n
$$
o^* \leftarrow \hat{o};
$$
\n
$$
\text{end}
$$

end

K 로 K K 로 K - 로 로 - 9 Q @

Capacity constraints

$$
\begin{aligned}\n\omega_{\text{inr}} &\le y_{\text{inr}} &\forall i \in C_n, \in \mathcal{N}, r \in \mathcal{R} \\
\sum_{m=1}^n \omega_{\text{inr}} &\le (c_i - 1)y_{\text{inr}} + \forall i \in C_n, n > c_i \in \mathcal{N}, r \in \mathcal{R} \\
(n - 1)(1 - y_{\text{inr}}) &\le \sum_{m=1}^n \omega_{\text{inr}} &\ge c_i(1 - y_{\text{inr}}) &\forall i \in C_n, n > 1 \in \mathcal{N}, r \in \mathcal{R}\n\end{aligned}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ [할 게 이익어

EPFL

Compute Objective Value with Priority Queue

```
Function compute objective value with priority queue(p, c, \text{prio} queue):
     \varsigma \leftarrow (0)_{i \in C}for idx \in prio queue do
           u \leftarrow [U_{idx}^i for i \in C]a \leftarrow sort(u, descending)\varphi \leftarrow false
          i \leftarrow 1while j \leqslant C - 1 and \phi do
               if \varsigma_{a_j} \leqslant c_{a_j} - 1 then
                     \zeta_{a_i} \ \ \pm \ \ \ 1\varphi \leftarrow \text{true}end
                else
                 j + 1end
          end
     end
      endo \leftarrow \sum_ii \in C Si \cdot p_ireturn o
end
```
K @ ▶ K 로 ▶ K 로 ▶ 로!ㄹ K) Q @

Compute Objective Value with Capacities (revenue max/min)

```
Function compute objective value with capacities (p, c; max):
     s \leftarrow sortperm(n)\varsigma \leftarrow (0)_{i \in C}A \leftarrow \ellfor idx \in \mathcal{N} \times \mathcal{R} do
            u \leftarrow [U_{idx}^i for i \in C]<br>a \leftarrow sort(u, descending)
          A \leftarrow A \cup \{a\}if max then
       A \leftarrow sort(A, ascending)else
       A \leftarrow sort(A, descending)while |A| \geq 1 do
           \pi \leftarrow A_{11}A \leftarrow A \setminus \{A_1\}if \pi \geq 1 then
                  \varsigma_{S_{next\_pref}} \ += 1if \varsigma_{s_{next,pref}} = c_{s_{next,pref}} then<br>| Remove all entries \pi from A
                       if max then
                         \mid A \leftarrow sort(A, ascending)else
                          A \leftarrow sort(A, descending)\circ \leftarrow \searrowř
                  \frac{C_i \cdot D_i}{\sqrt{2}}return o
```
[Fast Algorithms for the \(capacitated\) CPP](#page-0-0) July 1, 2024 7/11

Table 9: Test 2: Priority queue vs. Max revenue vs. Robust Optimization

			BEAC		BEAC-M		BEAC-R	
N	R		Time (s)	Revenue	Time (s)	Revenue	Time (s)	Revenue
50		2 ₂	0.43	27.61	0.44	28.81	0.45	27.61
50	5	\mathcal{P}	1.72	26.51	1.78	28.44	1.82	26.46
50	10	\mathcal{P}	11.42	27.06	12.88	28.3	12.98	27.01
50	25	\mathfrak{D}	169.08	27.08	197.23	28.58	189.28	27.06
50	50	$\overline{2}$	1272.68	26.85	1513.44	28.61	1523.89	26.85
50	100	2	9928.57	26.85	12093.8	28.57	12494.13	26.85
50	250	\mathcal{P}	>45 hours	≥ 25.00	>45 hours	≥ 26.63	>45 hours	\geqslant 24.34

Bibliography I

- Gallego, G. and Wang, R. (2014). Multiproduct price optimization and competition under the nested logit model with product-differentiated price sensitivities. Operations Research, 62(2):450–461.
- Gilbert, F., Marcotte, P., and Savard, G. (2014). Mixed-logit network pricing. Computational Optimization and Applications, 57:105–127.
- Haering, T., Legault, R., Torres, F., Ljubic, I., and Bierlaire, M. (2023). Exact algorithms for continuous pricing with advanced discrete choice demand models. Technical Report TRANSP-OR 231211, Transport and Mobility Laboratory, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
- Ibeas, A., Dell'Olio, L., Bordagaray, M., and Ortúzar, J. d. D. (2014). Modelling parking choices considering user heterogeneity. Transportation Research Part A: Policy and Practice, $70.41 - 49.$

K ロ > K 個 > K 로 > K 로 > (로)= 19 Q Q

Bibliography II

- Korfmann, F. (2018). Essays on Advanced Discrete Choice Applications. PhD thesis, Staats-und Universitätsbibliothek Hamburg Carl von Ossietzky.
- Marandi, A. and Lurkin, V. (2023). An exact algorithm for the static pricing problem under discrete mixed logit demand. EURO Journal on Computational Optimization, 11:100073.
- Müller, D., Nesterov, Y., and Shikhman, V. (2021). Dynamic pricing under nested logit demand. arXiv preprint arXiv:2101.04486.
- Paneque, M. P., Bierlaire, M., Gendron, B., and Azadeh, S. S. (2021). Integrating advanced discrete choice models in mixed integer linear optimization. Transportation Research Part B: Methodological, 146:26–49.
- Paneque, M. P., Gendron, B., Azadeh, S. S., and Bierlaire, M. (2022). A lagrangian decomposition scheme for choice-based optimization. Computers & Operations Research, 148:105985.

K ロ > K 個 > K 로 > K 로 > (로)= 19 Q Q

Bibliography III

- Shen, Z.-J. M. and Su, X. (2007). Customer behavior modeling in revenue management and auctions: A review and new research opportunities. Production and operations management, 16(6):713–728.
- van de Geer, R. and den Boer, A. V. (2022). Price optimization under the finite-mixture logit model. Management Science, 68(10):7480–7496.
- Wu, D., Yin, Y., Lawphongpanich, S., and Yang, H. (2012). Design of more equitable congestion pricing and tradable credit schemes for multimodal transportation networks. Transportation Research Part B: Methodological, 46(9):1273–1287.

