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Introduction CPP

The Choice-based Pricing Problem (CPP)

CPP

‚ Supplier offers J products for sale. Goal: determine optimal price for each product to
maximize total revenue.

‚ There always exists an opt-out option (competition, etc).

‚ Demand for each product is modeled using a discrete choice model (DCM).

DCM

‚ For every costumer n and product i a stochastic utility Uin is defined, which depends on
socio-economic characteristics and attributes of the products (e.g. the price).
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Introduction CPP

The Choice-based Pricing Problem (CPP)

Pre-estimated DCM

‚ Utility of alternative i for customer n:

Uin “ Vin ` βp
inpi ` εin

‚ Vin : deterministic utility (exogenous)

‚ βp
in : price sensitivity parameter (exogenous)

‚ pi : price of alternative i (endogenous)

‚ εin : stochastic error term

Objective function

‚ maximize expected revenue =
ÿ

n

ÿ

i

Pnpiqpi
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Introduction CPP

The Choice-based Pricing Problem (CPP)

‚ Probability that customer n chooses alternative i :

Pnpiq “ PpUin ě Ujn @j P Jq

‚ Logit (εin „ i.i.d. Gumbel(0, 1)):

Pnpiq “
eVin

ř

jPCn
eVjn

‚ Mixed Logit (Logit + βk „ F pβk |θq):

Pnpiq “

ż

eVinpβknq

ř

jPCn
eVjnpβknq

f pβk |θqdβk
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Introduction CPP

Literature

Integrating Logit into...

‚ Revenue Management (Shen and Su, 2007; Korfmann, 2018)

Integrating Nested Logit into...

‚ Toll setting (Wu et al., 2012)

‚ Pricing (Gallego and Wang, 2014; Müller et al., 2021)

Integrating Mixed Logit into...

‚ Toll setting (Gilbert et al., 2014)

‚ Pricing (Marandi and Lurkin, 2023; van de Geer and den Boer, 2022)
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Introduction CPP

Literature

Integrating general DCM into optimization problems

‚ Formulation as a mixed-integer-linear program (MILP) using Monte-Carlo simulation
(Paneque et al., 2021)

‚ Heuristic based on Lagrangian decomposition and grouping of scenarios (Paneque
et al., 2022)

‚ Exact method based on spatial Branch-and-Benders decomposition (B&BD) +
low-dimensional polynomial algorithm (BEA) (without capacity constraints) (Haering
et al., 2023)

New contribution:

‚ Extend BEA to deal with capacity constraints, develop heuristic (with and without
capacities) to handle higher dimensions, use it to speed up B&BD.
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Methodology Base layer

Base layer: Monte Carlo Simulation

‚ Simulate R scenarios (draws), each with deterministic utilities Uinr :

Uinr “ Vin ` βp
inrpi ` εinr @n P N , i P Cn, r P R

“ cinr ` βp
inrpi @n P N , i P Cn, r P R
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Methodology Breakpoints

Breakpoints: Illustration

‚ 1 customer, 1 controlled price + opt-out
‚ Breakpoint p1 :

U0 “ U1 ùñ U0 “ c1 ` βp
1p1 ùñ p1 “

U0 ´ c1
βp
1

.

p1 pU1

Price

Revenue

Controlled alternative
Opt-out alternative
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Methodology Breakpoints

Breakpoints: Illustration

‚ 3 customers, 1 controlled price + opt-out

‚ Numbers: how many customers are captured

p11 p21 p31 pU1

3

2
1

0 Price

Rev.
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Methodology Breakpoints

Breakpoint Exact Algorithm (BEA) (Haering et al., 2023)

Introduce
alternative 1,
compute ps1

Introduce
alternative 2,
compute ps2,1

Compute revenue
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“
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Fix p
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1

Compute the breakpoints ps1
(from U0s “ U1s)

for all simulated customers s
(here 3 in total)

Compute breakpoints ps2
(from maxpU0s ,U1sq “ U2s)

From lowest
to highest price
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Methodology Extending the BEA

Adding capacity constraints

‚ Evaluating the objective function is not more difficult (assume exogenous priority queue).

‚ Need to compute breakpoints from not only the utility of the best alternative so far but
from all alternative’s utilities, due to people no longer always choosing highest utility
alternative.
ùñ Customers may switch from any of the previously introduced alternatives.
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Methodology Extending the BEA

Breakpoint Exact Algorithm with Capacities (BEAC)

Introduce
alternative 1,
compute ps1

Introduce
alternative 2,
compute ps2,1

Compute capacitated revenue

Fix
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p
1
1

Introduce
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Compute capacitated revenue
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21

Introduce
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compute ps2,3

Compute capacitated revenue

Fix p
1 “

p 3
1

Compute the breakpoints ps1
(from U0s “ U1s)

for all simulated customers s

Compute breakpoints ps2
(from U0s “ U2s and

U1s “ U2s)

From lowest
to highest price
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Methodology Extending the BEA

Breakpoint Heuristic Algorithm (BHA)

Coordinate descent

Start: initial solution p˚

Compute initial objective o˚

Set j “ 1

Optimize price j

Is pp̂, ôq better?
Update p˚ “ p̂, o˚ “ ô

Set j “ j ` 1
(or cycle)

Any improvement
over the last
J iterations?

Set j “ j ` 1
(or cycle)

Stop
yes no no

yes
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Methodology Extending the BEA

BHA extension via Iterated Local Search (ILS)

Escape local optima

Start: Use BHA sol. as start point p˚

with initial objective o˚

Set j “ 1

Perturb price j by δ
Rerun BHA

Is pp̂, ôq better?
Update p˚ “ p̂, o˚ “ ô

Set j “ j ` 1
(or cycle)

Any improvement
over the last
J iterations?

Set j “ j ` 1
(or cycle)

Increase δ by γ

Exceeded
max δ?

Stop

yes no no

yes

yes

no
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Methodology Guiding the spatial B&BD approach

Guiding an exact method using the heuristic solution

‚ Goal is to improve exact spatial Branch & Benders algorithm.

‚ Main way to speed up a Branch and Bound algorithm is to improve the bounds.

‚ Heuristic solution provides strong upper bound (initial feasible solution)
Ñ Reduces the number of nodes in the tree.

‚ Improve lower bounds: Valid inequalities.
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Methodology Guiding the spatial B&BD approach

Valid inequalities

Breakpoints only work if everything but one price is fixed. But...

For each simulated customer pn, rq:

‚ minimal breakpoint p̌nri (assuming strongest competition)

‚ maximal breakpoint p̂nri (assuming weakest competition)

pi ď p̌nri ùñ pn, rq is guaranteed to select i ùñ ωinr ě 1

pi ě p̂nri ùñ pn, rq is guaranteed to not select i ùñ ωinr ď 0, ηinr ď 0
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Methodology Guiding the spatial B&BD approach

Improving bounds on prices

We can consider:

p̌i – min
n,r

p̌nri

p̂i – max
n,r

p̂nri

knowing that:

pi ą p̂i ùñ no one chooses alternative i

pi ă p̌i ùñ everyone chooses alternative i
wesh.hhh(if it is in their choice set)

TH, RL, MB (EPFL) Fast Algorithms for the (capacitated) CPP July 1, 2024 19 / 35



Methodology Guiding the spatial B&BD approach

Improving bounds on prices

We can also say:

pi ą m-th highest p̂nri ùñ at most m simulated customers choose alternative i

pi ă m-th lowest p̌nri ùñ at least m simulated customers choose alternative i

‚ Allows to adapt bounds to aim at specific outcomes.

‚ We will assume that for each product there should be at least one customer/scenario in
which a product is chosen, as else it could be removed from the set of offered products.

‚ ùñ Replace pUi by p̂i whenever p̂i ă pUi .
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Experimental Results Case Study

Case Study

Parking space operator (Ibeas et al., 2014)

‚ Alternatives: Paid-Street-Parking (PSP), Paid-Underground-Parking (PUP) and
Free-Street-Parking (FSP).

‚ Optimize prices for PSP and PUP, FSP is the opt-out alternative.

‚ Socio-economic characteristics: trip origin, vehicle age, driver income, residence area.

‚ Product attributes: access time to parking, access time to destination, and parking fee
(price).

‚ Add more alternatives by increasing access time to destination.

‚ Choice model is a Mixed Logit, βfee, βtime parking „ N pµ, σq.
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Experimental Results Case Study

Results

Table 1: MILP vs. BEAC in the capacitated case

MILP BEAC

N R J Time (s) Revenue Time (s) Revenue

50 2 2 4.17 27.61 0.43 27.61
50 5 2 46.95 26.51 1.72 26.51
50 10 2 180.85 27.06 11.42 27.06
50 25 2 3119.66 27.08 169.08 27.08
50 50 2 ą5 hours ě25.15 1272.68 26.85
50 100 2 ą25 hours ě25.11 9928.57 26.85
50 250 2 ą45 hours ě23.45 ą45 hours ě25.00
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Experimental Results Case Study

Results

Table 2: BHA and ILS vs. MILP and BEAC in the capacitated case

MILP BEAC BHA ILS

N R J Time (s) Revenue Time (s) Revenue Time (s) Revenue Time (s) Revenue

50 2 2 4.17 27.61 0.43 27.61 0.22 27.61 1.03 27.61
50 5 2 46.95 26.51 1.72 26.51 0.32 26.46 5.91 26.51
50 10 2 180.85 27.06 11.42 27.06 0.58 27.05 20.34 27.06
50 25 2 3119.66 27.08 169.08 27.08 3.40 27.05 129.66 27.08
50 50 2 ą5 hours ě25.15 1272.68 26.85 8.31 26.53 559.04 26.85
50 100 2 ą25 hours ě25.11 9928.57 26.85 51.77 26.72 2791.28 26.85
50 250 2 ą45 hours ě23.45 ą45 hours ě25.00 455.37 26.66 15867.67 26.71
50 10 4 ą10 hours ě22.21 ą10 hours ě25.41 7.08 26.78 527.34 26.83
50 50 4 ą20 hours ě22.19 ą20 hours ě27.00 166.21 27.00 7234.88 27.00
50 100 4 ą45 hours ě20.50 ą45 hours ě24.86 866.97 26.67 34050.57 26.67
50 200 4 ą72 hours ě20.32 ą72 hours ě24.79 2762.39 26.70 106286.13 26.70
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Experimental Results Case Study

Results

N R J BHA (s)

50 1000 2 15093
50 1000 3 25326
50 1000 4 69134
50 1000 5 112042
50 1000 6 178923
50 2000 2 51637
50 2000 3 84231
50 2000 4 150132
50 2000 5 193233
50 3000 2 164922
50 3000 3 184293
50 3000 4 ą259200
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Experimental Results Case Study

Results

Table 3: BHA and ILS vs. B&BD and BEA in the uncapacitated case

B&BD BEA BHA ILS

N R J Time (s) Revenue Time (s) Revenue Time (s) Revenue Time (s) Revenue

50 200 1 19 23.96 0 23.96 0.00 23.96 0.02 23.96
50 200 2 1413 26.99 12 26.99 0.00 26.99 0.03 26.99
50 200 3 34340 26.54 39,636 26.54 0.01 26.54 0.05 26.54
20 100 4 12478 10.40 ą24 hours ě9.81 0.00 10.40 0.14 10.40
20 200 4 29213 10.40 ą24 hours ě10.40 0.01 10.40 0.41 10.40
20 300 4 ą24 hours ě10.38 ą24 hours ě10.13 0.02 10.24 0.64 10.24
20 400 4 ą24 hours ě9.81 ą24 hours ě9.42 0.05 10.26 0.78 10.26
20 500 4 ą24 hours ě10.01 ą24 hours ě9.67 0.13 10.24 1.37 10.24
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Experimental Results Case Study

Results

Table 4: BHA vs. B&BD solution quality

N R J BHA B&BD Gap (%)

20 20 3 10.281 10.281 0
20 20 4 10.271 10.28 0.09
20 20 5 10.283 10.294 0.11
20 20 6 10.290 10.302 0.12
20 20 7 10.292 10.306 0.14
20 20 8 10.330 10.336 0.06
20 20 9 10.329 10.335 0.06
20 20 10 10.293 10.300 0.07
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Experimental Results Case Study

Results

N R J BHA (s)

50 500000 2 56.19
50 500000 3 77.46
50 500000 4 187.41
50 500000 5 163.23
50 500000 6 194.24
50 1000000 2 68.24
50 1000000 3 132.98
50 1000000 4 312.43
50 1000000 5 300.40
50 1000000 6 412.53
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Experimental Results Case Study

Results

Table 5: B&BD with Guidance - 10% gap

N R J
normal

w/out VIs (s)
normal
w VIs (s)

Guided
w/out VIs (s)

Guided
w VIs (s)

Speedup
from just VIs (%)

Add. Speedup
from Sol. (%)

Total
speedup (%)

50 1000 3 987 1132 731 816 -14.69 27.92 17.33
50 2000 3 2878 3490 2513 2693 -21.26 22.84 6.43
50 3500 3 10325 12919 6390 7454 -25.12 42.3 27.81
50 1000 4 4662 3311 3705 2472 28.98 25.34 46.98
50 2000 4 17599 12068 10868 8288 31.43 31.32 52.91
50 3500 4 48445 31210 40061 29504 35.58 5.47 39.1
50 1000 5 8242 5428 5664 3914 34.14 27.89 52.51
50 2000 5 25842 16641 17420 12268 35.6 26.28 52.53
50 3500 5 114216 81826 85083 58754 28.36 28.2 48.56
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Experimental Results Case Study

Results

Table 6: B&BD with Guidance - 5% gap

N R J
normal

w/out VIs (s)
normal
w VIs (s)

Guided
w/out VIs (s)

Guided
w VIs (s)

Speedup
from just VIs (%)

Add. Speedup
from Sol. (%)

Total
speedup (%)

50 1000 3 2372 2454 1933 2245 -3.46 8.52 5.35
50 2000 3 7883 8359 7106 7342 -6.04 12.17 6.86
50 3500 3 51964 57229 42991 47282 -10.13 17.38 9.01
50 1000 4 12062 10668 10490 8934 11.56 16.25 25.93
50 2000 4 43829 36524 36222 32929 16.67 9.84 24.87
50 3500 4 259200 240767 238777 198981 7.11 17.36 23.23
50 1000 5 24371 20590 19519 16930 15.51 17.78 30.53
50 2000 5 84104 60814 70676 48541 27.69 20.18 42.28
50 3500 5 259200 259200 259200 247944 - - -
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Experimental Results Case Study

Results

Table 7: B&BD with Guidance - 1% gap

N R J
normal

w/out VIs (s)
normal
w VIs (s)

Guided
w/out VIs (s)

Guided
w VIs (s)

Speedup
from just VIs (%)

Add. Speedup
from Sol. (%)

Total
speedup (%)

50 1000 3 15840 16933 13239 14594 -6.9 13.81 7.87
50 2000 3 42261 45223 35882 37137 -7.01 17.88 12.12
50 3500 3 183696 195743 152833 162594 -6.56 16.93 11.49
50 500 4 47101 46719 47963 43190 0.81 7.55 8.3
50 1000 4 131122 135564 107288 105596 -3.39 22.11 19.47
50 1500 4 229620 230187 203348 202560 -0.25 12 11.78
50 2000 4 259200 259200 259200 259200 - - -
50 500 5 139618 125755 115783 109084 9.93 13.26 21.87
50 1000 5 259200 259200 259200 259200 - - -
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Experimental Results Case Study

Unfair comparison to a Mixed-Logit-specific algorithm

Table 8: Runtime (in seconds) against CoBiT (Marandi and Lurkin, 2023) for the uncapacitated CPP.

N Approx. Points / Draws J CoBiT B&B B&BD BEA BHA

10 1 2 514 0 0 1 0
10 9 2 62 0 3 1 0
10 16 2 184 1 8 1 0
10 25 2 225 2 11 1 0
10 49 2 323 9 45 1 0
10 64 2 362 8 36 1 0
10 100 2 278 15 69 1 0
10 121 2 53 20 100 1 0
10 144 2 407 25 105 1 0
10 169 2 84 35 160 1 0
10 400 2 989 101 408 1 0
10 900 2 2912 286 966 4 0
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Conclusions
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Conclusions

Conclusions

With capacity constraints

‚ Exact: BEAC « 20 times faster than MILP (for two prices or less).

‚ Heuristic: BHA up to 5000x times faster than BEAC (especially in high dim).

Without capacity constraints

‚ Heuristic: BHA outspeeds other approaches by factors ě 106 but can get stuck locally.

‚ Exact: Using the solution of the BHA together with valid inequalities, we can speed up
the exact spatial B&BD algorithm by « 20% (more in the beginning).
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Conclusions

Future work

Pricing

‚ Assortment optimization on top of pricing.

‚ Could add any constraints for BEA / BHA since they only evaluate objective function.

‚ Improve escaping local optima.

Extension to other optimization problems

‚ Facility location, Airline scheduling and fleet assignment.
‚ Maximum likelihood estimation (utility depending on multiple parameters)

‚ B&BD ✔
‚ BEA ✘
‚ BHA ✔ Ñ Tradeoff between large R and optimality gap. Does not require linearity in β.
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Appendix - Utility parameters reported in (Ibeas et al., 2014)

Parameter Value

ASCFSP 0.0
ASCPSP 32.0
ASCPUP 34.0
Fee (€) „ N p´32.328, 14.168q

Fee PSP - low income (€) -10.995
Fee PUP - low income (€) -13.729
Fee PSP - resident (€) -11.440
Fee PUP - resident (€) -10.668
Access time to parking (min) „ N p´0.788, 1.06q

Access time to destination (min) -0.612
Age of vehicle (1/0) 4.037
Origin (1/0) -5.762
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MILP formulation (Paneque et al., 2021)

max
p,ω,U,h

1

R

ÿ

rPR

ÿ

nPN

ÿ

iPCn

piωinr poq

s.t.
ÿ

iPCnYt0u

ωinr “ 1 @n P N , r P R pµnr q

hnr “ c0nrω0nr `
ÿ

iPCn

Uinrωinr @n P N , r P R pζnr q

hnr ě c0nr @n P N , r P R pα0nr q

hnr ě Uinr @i P Cn, n P N , r P R pαinr q

Uinr “ cinr ` βin
p pi @i P Cn, n P N , r P R pκinr q

ω P t0, 1upJ`1qNR

p P rpL1 , p
U
1 s ˆ . . . ˆ rpLJ , p

U
J s

U, h P RJNR ,RNR
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Results BEA

N R J BEA (s)

50 500 3 117167
50 1000 3 259200
50 1500 3 259200
50 2000 3 259200
50 2500 3 259200
50 3000 3 259200
50 3500 3 259200
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Breakpoint Exact Algorithm (BEA) (Haering et al., 2023)

Algorithm 1: Breakpoint Exact Algorithm (BEA) to solve the CPP

Result: optimal solution p˚ and revenue o˚ for CPP.
p˚
j Ð 0 @j P t1, . . . , Ju

o˚ Ð 0
for s in S do

psj Ð 0 @j P t1, . . . , Ju

hs1nr Ð c0nr @pn, rq P N ˆ R
ηnr Ð 0 @pn, rq P N ˆ R
pp̂, ôq Ð enumerateps, p, hs1 , η, 1q

if ô ą o˚ then
p˚ Ð p̂;
o˚ Ð ô;

end

end
return pp˚, o˚qTH, RL, MB (EPFL) Fast Algorithms for the (capacitated) CPP July 1, 2024 4 / 11



Capacity constraints

ωinr ď yinr @i P Cn, P N , r P R
n

ÿ

m“1

ωimr ď pci ´ 1qyinr ` @i P Cn, n ą ci P N , r P R
pn ´ 1qp1 ´ yinr q

n
ÿ

m“1

ωimr ě ci p1 ´ yinr q @i P Cn, n ą 1 P N , r P R
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Compute Objective Value with Priority Queue

Function compute objective value with priority queue(p, c, prio queue):
ς Ð p0qiPC

for idx P prio queue do
u Ð rU i

idx for i P C s

a Ð sortpu, descendingq

φ Ð false
j Ð 1
while j ď C ´ 1 and !φ do

if ςaj ď caj ´ 1 then
ςaj `“ 1
φ Ð true

end
else

j `“ 1
end

end

end
o Ð

ř

iPC ςi ¨ pi
return o

end
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Compute Objective Value with Capacities (revenue max/min)

Function compute objective value with capacities(p, c ;max):
s Ð sortpermppq

ς Ð p0qiPC

A Ð tu

for idx P N ˆ R do
u Ð rU i

idx for i P C s

a Ð sortpu, descendingq

A Ð A Y tau

if max then
A Ð sortpA, ascendingq

else
A Ð sortpA, descendingq

while |A| ě 1 do
π Ð A11

A Ð AztA1u

if π ě 1 then
ςsnext pref

`“ 1

if ςsnext pref
“ csnext pref

then
Remove all entries π from A
if max then

A Ð sortpA, ascendingq

else
A Ð sortpA, descendingq

o Ð
ř

iPC ςi ¨ pi
return oTH, RL, MB (EPFL) Fast Algorithms for the (capacitated) CPP July 1, 2024 7 / 11



Results

Table 9: Test 2: Priority queue vs. Max revenue vs. Robust Optimization

BEAC BEAC-M BEAC-R

N R J Time (s) Revenue Time (s) Revenue Time (s) Revenue

50 2 2 0.43 27.61 0.44 28.81 0.45 27.61
50 5 2 1.72 26.51 1.78 28.44 1.82 26.46
50 10 2 11.42 27.06 12.88 28.3 12.98 27.01
50 25 2 169.08 27.08 197.23 28.58 189.28 27.06
50 50 2 1272.68 26.85 1513.44 28.61 1523.89 26.85
50 100 2 9928.57 26.85 12093.8 28.57 12494.13 26.85
50 250 2 ą45 hours ě25.00 ą45 hours ě26.63 ą45 hours ě24.34
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