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Motivation

Motivation

Human dimension in

engineering

business

marketing

planning

policy making

Need for

behavioral theories

quantitative methods

operational mathematical models
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Motivation

Motivation

Concept of demand

marketing

transportation

energy

finance

Concept of choice

brand, product

mode, destination

type, usage

buy/sell, product
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Motivation

Importance

Daniel L. McFadden

UC Berkeley 1963, MIT 1977, UC Berkeley 1991

Laureate of The Bank of Sweden Prize in Economic

Sciences in Memory of Alfred Nobel 2000

Owns a farm and vineyard in Napa Valley

“Farm work clears the mind, and the vineyard is a
great place to prove theorems”

M. Bierlaire (TRANSP-OR ENAC EPFL) Introduction to choice modeling January 6, 2017 5 / 56



Theoretical foundations

Choice theory

Choice: outcome of a sequential decision-making process

defining the choice problem

generating alternatives

evaluating alternatives

making a choice,

executing the choice.

Theory of behavior that is

descriptive: how people behave and not how they should

abstract: not too specific

operational: can be used in practice for forecasting

M. Bierlaire (TRANSP-OR ENAC EPFL) Introduction to choice modeling January 6, 2017 6 / 56



Theoretical foundations

Building the theory

Define
1 who (or what) is the decision maker,

2 what are the characteristics of the decision maker,

3 what are the alternatives available for the choice,

4 what are the attributes of the alternatives, and

5 what is the decision rule that the decision maker uses to make a
choice.
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Theoretical foundations Decision maker

Decision maker

Individual
a person

a group of persons (internal interactions are ignored)
household, family
firm
government agency

notation: n
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Theoretical foundations Characteristics

Characteristics of the decision maker

Disaggregate models

Individuals

face different choice situations

have different tastes

Characteristics

income

sex

age

level of education

household/firm size

etc.
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Theoretical foundations Choice set

Alternatives

Choice set

Non empty finite and countable set of alternatives

Universal: C
Individual specific: Cn ⊆ C
Availability, awareness

Example

Choice of a transportation model

C ={car, bus, metro, walking }
If the decision maker has no driver license, and the trip is 12km long

Cn = {bus,metro}
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Theoretical foundations Choice set

Continuous choice set

Microeconomic demand analysis

Commodity bundle

q1: quantity of
milk

q2: quantity of
bread

q3: quantity of
butter

Unit price: pi

Budget: I
q1

q2

q3

p1q1 + p2q2 + p3q3 = I
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Theoretical foundations Choice set

Discrete choice set

Discrete choice analysis

List of alternatives

Brand A

Brand B

Brand C

A

B

C

•

•

•
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Theoretical foundations Alternative attributes

Alternative attributes

Characterize each alternative i

for each individual n

price

travel time

frequency

comfort

color

size

etc.

Nature of the variables

Discrete and continuous

Generic and specific

Measured or perceived
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Theoretical foundations Decision rule

Decision rule

Homo economicus

Rational and narrowly self-interested economic actor who is optimizing her
outcome

Utility

Un : Cn −→ R : a! Un(a)

captures the attractiveness of an alternative

measure that the decision maker wants to optimize

Behavioral assumption

the decision maker associates a utility with each alternative

the decision maker is a perfect optimizer

the alternative with the highest utility is chosen
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Theoretical foundations Decision rule

Simple example: mode choice

Attributes

Attributes
Alternatives Travel time (t) Travel cost (c)

Car (1) t1 c1
Bus (2) t2 c2

Utility

Ũ = Ũ(y1, y2),

where we impose the restrictions that, for i = 1, 2,

yi =

{
1 if travel alternative i is chosen,
0 otherwise;

and that only one alternative is chosen: y1 + y2 = 1.
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Theoretical foundations Decision rule

Simple example: mode choice

Choice set

(1, 0)

(0, 1)

•

•

y 2

y1
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Theoretical foundations Decision rule

Simple example: mode choice

Utility functions

U1 = −βtt1 − βcc1,
U2 = −βtt2 − βcc2,

where βt > 0 and βc > 0 are parameters.

Equivalent specification

U1 = −(βt/βc)t1 − c1 = −βt1 − c1
U2 = −(βt/βc)t2 − c2 = −βt2 − c2

where β > 0 is a parameter.

Choice

Alternative 1 is chosen if U1 ≥ U2.

Ties are ignored.
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Theoretical foundations Decision rule

Simple example: mode choice

Choice

Alternative 1 is chosen if

−βt1 − c1 ≥ −βt2 − c2

or

−β(t1 − t2) ≥ c1 − c2

Alternative 2 is chosen if

−βt1 − c1 ≤ −βt2 − c2

or

−β(t1 − t2) ≤ c1 − c2

Dominated alternative

If c2 > c1 and t2 > t1, U1 > U2 for any β > 0

If c1 > c2 and t1 > t2, U2 > U1 for any β > 0
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Theoretical foundations Decision rule

Simple example: mode choice

Trade-off

Assume c2 > c1 and t1 > t2.

Is the traveler willing to pay the extra cost c2 − c1 to save the extra
time t1 − t2?

Alternative 2 is chosen if

−β(t1 − t2) ≤ c1 − c2

or

β ≥
c2 − c1
t1 − t2

β is called the willingness to pay or value of time
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Theoretical foundations Decision rule

Simple example: mode choice

c1 + βt1 = c2 + βt2

t1 − t2

c1 − c2

Alt. 1 is dominant

Alt. 2 is dominant

Alt. 2 is preferred

1 is preferred

β
1

Alt. 1 is chosen
Alt. 2 is chosen
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Probabilistic choice theory
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Probabilistic choice theory

Behavioral validity of the utility maximization?

Assumptions

Decision-makers

are able to process information

have perfect discrimination power

have transitive preferences

are perfect maximizer

are always consistent

Relax the assumptions

Use a probabilistic approach: what is the probability that alternative i is
chosen?
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Probabilistic choice theory

Introducing probability

Constant utility

Human behavior is
inherently random

Utility is deterministic

Consumer does not
maximize utility

Probability to use inferior
alternative is non zero

Random utility

Decision-maker are rational
maximizers

Analysts have no access to
the utility used by the
decision-maker

Utility becomes a random
variable

Niels Bohr

Nature is stochastic

Albert Einstein

God does not throw dice
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Binary choice

Simple example

Choice

between Auto and Transit

Data

Time Time Time Time
# auto transit Choice # auto transit Choice
1 52.9 4.4 T 11 99.1 8.4 T
2 4.1 28.5 T 12 18.5 84.0 C
3 4.1 86.9 C 13 82.0 38.0 C
4 56.2 31.6 T 14 8.6 1.6 T
5 51.8 20.2 T 15 22.5 74.1 C
6 0.2 91.2 C 16 51.4 83.8 C
7 27.6 79.7 C 17 81.0 19.2 T
8 89.9 2.2 T 18 51.0 85.0 C
9 41.5 24.5 T 19 62.2 90.1 C
10 95.0 43.5 T 20 95.1 22.2 T

21 41.6 91.5 C
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Model specification

Binary choice model

Specification of the utilities

UC = β1TC + εC
UT = β1TT + εT

where TC is the travel time with car (min) and TT the travel time with
transit (min).

Choice model

P(C |{C ,T}) = Pr(UC ≥ UT )
= Pr(β1TC + εC ≥ β1TT + εT )
= Pr(β1(TC − TT ) ≥ εT − εC )
= Pr (ε ≤ β1(TC − TT ))

where ε = εT − εC .
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Model specification

Error term

Three assumptions about the random variables εT and εC
1 What’s their mean?

2 What’s their variance?

3 What’s their distribution?

Note

For binary choice, it would be sufficient to make assumptions about
ε = εT − εC .

But we want to generalize later on.
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Model specification Error term

The mean

Change of variables

Define E[εC ] = βC and E[εT ] = βT .

Define ε′C = εC − βC and ε′T = εT − βT ,

so that E[ε′C ] = E[ε′T ] = 0.

Choice model

P(C |{C ,T}) =

Pr(β1(TC − TT ) ≥ εT − εC ) =
Pr(β1(TC − TT ) ≥ ε′T + βT − ε′C − βC ) =
Pr(β1(TC − TT ) + (βC − βT ) ≥ ε′T − ε′C ) =
Pr(β1(TC − TT ) + β0 ≥ ε′)

where β0 = βC − βT and ε′ = ε′T − ε′C .
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Model specification Error term

The mean

Specification

The means of the error terms can be included as parameters of the
deterministic part.

Only the mean of the difference of the error terms is identified.

Alternative Specific Constant

Equivalent specifications:

UC = β1TC +εC
UT = β1TT + βT +εT

or
UC = β1TC + βC +εC
UT = β1TT +εT

In practice: associate an alternative specific constant with all alternatives
but one.
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Model specification Error term

The mean

Note

Adding the same constant to all utility functions does not affect the choice
model

Pr(UC ≥ UT ) = Pr(UC + K ≥ UT + K ) ∀K ∈ R
n.

The bottom line...

If the deterministic part of the utility functions contains an Alternative
Specific Constant (ASC) for all alternatives but one, the mean of the error
terms can be assumed to be zero without loss of generality.
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Model specification Error term

The variance

Utility is ordinal

Utilities can be scaled up or down without changing the choice probability

Pr(UC ≥ UT ) = Pr(αUC ≥ αUT ) ∀α > 0

Link with the variance

Var(αUC ) = α2 Var(UC )
Var(αUT ) = α2 Var(UT )

Variance is not identified

As any α can be selected arbitrarily, any variance can be assumed.

No way to identify the variance of the error terms from data.

The scale has to be arbitrarily decided.

M. Bierlaire (TRANSP-OR ENAC EPFL) Introduction to choice modeling January 6, 2017 31 / 56



Model specification Error term

The distribution

Assumption 1

εT and εC are the sum of many r.v. capturing unobservable attributes
(e.g. mood, experience), measurement and specification errors.

Central-limit theorem

The sum of many i.i.d. random variables approximately follows a normal
distribution: N(µ,σ2).

Assumed distribution

εC ∼ N(0, 1), εT ∼ N(0, 1)
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Model specification Error term

The Normal distribution N(µ, σ2)

Probability density function (pdf)

f (t) =
1

σ
√
2π

e−
(t−µ)2

2σ2

Cumulative distribution function
(CDF)

P(c ≥ ε) = F (c) =

∫ c

−∞

f (t)dt

No closed form. 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

−3 −2 −1 0 1 2 3
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Model specification Error term

The distribution

ε = εT − εC
From the properties of the normal distribution, we have

εC ∼ N(0, 1)
εT ∼ N(0, 1)

ε = εT − εC ∼ N(0, 2)

As the variance is arbitrary, we may also assume

εC ∼ N(0, 0.5)
εT ∼ N(0, 0.5)

ε = εT − εC ∼ N(0, 1)
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Model specification Error term

The binary probit model

Choice model

P(C |{C ,T}) = Pr(β1(TC − TT ) + β0 ≥ ε) = Fε(β1(TC − TT ) + β0)

The binary probit model

P(C |{C ,T}) =
1√
2π

∫ β1(TC−TT )−β0

−∞

e−
1
2 t

2
dt

Not a closed form expression
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Model specification Error term

The distribution

Assumption 2

εT and εC are the maximum of many r.v. capturing unobservable
attributes (e.g. mood, experience), measurement and specification errors.

Gumbel theorem

The maximum of many i.i.d. random variables approximately follows an
Extreme Value distribution: EV(η, µ).

Assumed distribution

εC ∼ EV(0, 1), εT ∼ EV(0, 1).
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Model specification Error term

The Extreme Value distribution EV(η, µ)

Probability density function (pdf)

f (t) = µe−µ(t−η)e−e−µ(t−η)

Cumulative distribution function (CDF)

P(c ≥ ε) = F (c) =

∫ c

−∞

f (t)dt

= e−e−µ(c−η)

M. Bierlaire (TRANSP-OR ENAC EPFL) Introduction to choice modeling January 6, 2017 37 / 56



Model specification Error term

The Extreme Value distribution

pdf EV(0,1)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

−3 −2 −1 0 1 2 3

CDF EV(0,1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−3 −2 −1 0 1 2 3
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Model specification Error term

The Extreme Value distribution

Properties

If
ε ∼ EV(η, µ)

then

E[ε] = η +
γ

µ
and Var[ε] =

π2

6µ2

where γ is Euler’s constant.

Euler’s constant

γ = lim
k→∞

k∑

i=1

1

i
− ln k = −

∫
∞

0
e−x ln xdx ≈ 0.5772
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Model specification Error term

The distribution

ε = εT − εC
From the properties of the extreme value distribution, we have

εC ∼ EV(0, 1)
εT ∼ EV(0, 1)
ε ∼ Logistic(0, 1)
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Model specification Error term

The Logistic distribution: Logistic(η,µ)

Probability density function (pdf)

f (t) =
µe−µ(t−η)

(1 + e−µ(t−η))2

Cumulative distribution function (CDF)

P(c ≥ ε) = F (c) =

∫ c

−∞

f (t)dt =
1

1 + e−µ(c−η)

with µ > 0.
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Model specification Error term

The binary logit model

Choice model

P(C |{C ,T}) = Pr(β1(TC − TT ) + β0 ≥ ε) = Fε(β1(TC − TT ) + β0)

The binary logit model

P(C |{C ,T}) =
1

1 + e−(β1(TC−TT )+β0)
=

eβ1TC+β0

eβ1TC+β0 + eβ1TT

The binary logit model

P(C |{C ,T}) =
eVC

eVC + eVT
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Applying the model

Back to the example

Choice

between Auto and Transit

Data

Time Time Time Time
# auto transit Choice # auto transit Choice
1 52.9 4.4 T 11 99.1 8.4 T
2 4.1 28.5 T 12 18.5 84.0 C
3 4.1 86.9 C 13 82.0 38.0 C
4 56.2 31.6 T 14 8.6 1.6 T
5 51.8 20.2 T 15 22.5 74.1 C
6 0.2 91.2 C 16 51.4 83.8 C
7 27.6 79.7 C 17 81.0 19.2 T
8 89.9 2.2 T 18 51.0 85.0 C
9 41.5 24.5 T 19 62.2 90.1 C
10 95.0 43.5 T 20 95.1 22.2 T

21 41.6 91.5 C
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Applying the model

The model

Utility functions

VC1 = β1TC1

VT1 = β1TT1 + βT

Parameters

Let’s assume that βT = 0.5 and β1 = −0.1
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Applying the model

First individual

Variables

Let’s consider the first observation:

TC1 = 52.9

TT1 = 4.4

Choice = transit: yauto,1 = 0, ytransit,1 = 1

Choice

What’s the probability given by the model that this individual indeed
chooses transit?
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Applying the model

First individual

Utility functions

VC1 = β1TC1 = −5.29
VT1 = β1TT1 + βT = 0.06

Choice model

P1(transit) =
eVT1

eVT1 + eVC1
=

e0.06

e0.06 + e−5.29
∼= 1

Comments

The model fits the observation very well.

Consistent with the assumption that travel time is the only
explanatory variable.
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Applying the model

Second individual

Variables

TC2 = 4.1

TT2 = 28.5

Choice = transit: yauto,2 = 0, ytransit,2 = 1

Choice

What’s the probability given by the model that this individual indeed
chooses transit?

M. Bierlaire (TRANSP-OR ENAC EPFL) Introduction to choice modeling January 6, 2017 48 / 56



Applying the model

Second individual

Utility functions

VC2 = β1TC2 = −0.41
VT2 = β1TT2 + βT = −2.35

Choice model

P2(transit) =
eVT2

eVT2 + eVC2
=

e−2.35

e−2.35 + e−0.41
∼= 0.13

Comment

The model poorly fits the observation.

But the assumption is that travel time is the only explanatory variable.

Still, the probability is not small.
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Applying the model

Likelihood

Two observations

The probability that the model reproduces both observations is

P1(transit)P2(transit) = 0.13

All observations

The probability that the model reproduces all observations is

P1(transit)P2(transit) . . .P21(auto) = 4.62 10−4

Likelihood of the sample

L′ =
∏

n

(Pn(auto)
yauto,nPn(transit)

ytransit,n)

where yj ,n is 1 if individual n has chosen alternative j , 0 otherwise
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Applying the model

Likelihood

Likelihood

Probability that the model fits all observations.

It is a function of the parameters.

Examples

βT β1 L′

0 0 4.57 10−07

0 -1 1.97 10−30

0 -0.1 4.1 10−04

0.5 -0.1 4.62 10−04
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Applying the model

Likelihood function

−0.3−0.25−0.2−0.15−0.1−0.05 0−2−1.5−1−0.50
0.51

1.52
2.5

0.000000000000

0.001000000000

0.002000000000

0.003000000000

β1

βT

0
0.0005
0.001
0.0015
0.002
0.0025
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Applying the model

Likelihood function (zoom)

−0.08−0.07 −0.06−0.05 −0.04−0.030
0.1

0.2
0.3

0.4
0.5

0.001

0.002

0.003

β1

βT

0.0006
0.0008
0.001
0.0012
0.0014
0.0016
0.0018
0.002
0.0022
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Parameter estimation

Maximum likelihood estimation

Estimators for the parameters

Parameters that achieve the maximum likelihood

max
β

∏

n

(Pn(auto;β)
yauto,nPn(transit;β)

ytransit,n)

Log likelihood

Alternatively, we prefer to maximize the log likelihood

max
β

ln
∏

n

(Pn(auto)
yauto,nPn(transit)

ytransit,n) =

max
β

∑

n

yauto,n lnPn(auto) + ytransit,n lnPn(transit)
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Parameter estimation

Biogeme

M. Bierlaire (TRANSP-OR ENAC EPFL) Introduction to choice modeling January 6, 2017 55 / 56



Parameter estimation

Short course

Discrete Choice Analysis

Every year at EPFL,
Switzerland

Next event: February 12 —
February 16, 2017

Lecturers: Moshe Ben-Akiva
(MIT), Michel Bierlaire (EPFL)

URL:
transp-or.epfl.ch/dca

M. Bierlaire (TRANSP-OR ENAC EPFL) Introduction to choice modeling January 6, 2017 56 / 56


	Motivation
	Theoretical foundations
	Decision maker
	Characteristics
	Choice set
	Alternative attributes
	Decision rule

	Probabilistic choice theory
	Binary choice
	Model specification
	Error term

	Applying the model
	Parameter estimation

