



#### Public defense

# Modeling and estimation of pedestrian flows in train stations

Flurin S. Hänseler

Jury: M. Bierlaire, N. Geroliminis, S.P. Hoogendoorn, W.H.K. Lam, U. Weidmann

Lausanne, March 18, 2016

# Population growth and urbanization



# Mong Kok, Hong Kong



# Increase in mobility



# Flow performance





# Flow performance







# Flow performance













# Lausanne railway station





### Train passenger volume over a day



# Pedestrian movements on January 16, 2013





#### 7 h 44 m 1.3 s



#### Pedestrian demand estimation: Illustration



#### Lausanne railway station: Pedestrian network





Figure: 7:40–7:41  $\circ$  10 ped/min 100 ped/min 0 25 50 75  $\geq$  100 ped/min



Figure: 7:41–7:42  $\circ$  10 ped/min 100 ped/min 0 25 50 75  $\geq$  100 ped/min



Figure: 7:42–7:43  $\circ$  10 ped/min  $\bigcirc$  100 ped/min 0 25 50 75  $\geq$  100 ped/min







Figure: 7:44–7:45  $\circ$  10 ped/min  $\bigcirc$  100 ped/min 0 25 50 75  $\geq$  100 ped/min



Figure: 7:45–7:46  $\circ$  10 ped/min 100 ped/min 0 25 50 75  $\geq$  100 ped/min



Figure: 7:46–7:47  $\circ$  10 ped/min 100 ped/min 0 25 50 75  $\geq$  100 ped/min



Figure: 7:47–7:48  $\circ$  10 ped/min  $\bigcirc$  100 ped/min 0 25 50 75  $\geq$  100 ped/min

# Average OD demand in Lausanne railway station



- peak period: 7:30 8:00
- origin of streams
  - train platforms
  - city/metro/bus
  - shops















# Level-of-service assessment: Example



Figure: Pedestrian Underpass West, Lausanne railway station

# Level-of-service assessment: Example

- PU West, Lausanne
- January 22, 2013, 07:40 07:46

| LOS | [#/m <sup>2</sup> ] |
|-----|---------------------|
| А   | < 0.179             |
| В   | < 0.270             |
| С   | < 0.455             |
| D   | < 0.714             |
| Е   | < 1.333             |
| F   | $\geq$ 1.333        |





# Crowd management: Gating I



# Crowd management: Gating II



Source: https://www.youtube.com/watch?v=RRm1W9g54xg

# Crowd management: Load balancing I







(b) 7:47–7:48

#### control variables:

- train timetable
- train-track assignment
- train stop position



# Crowd management: Load balancing II



**Source**: https://www.youtube.com/watch?v=p2PcgDt4cFs

Public defense:

Modeling and estimation of pedestrian flows in train stations Flurin S. Hänseler

Jury: M. Bierlaire, N. Geroliminis, S.P. Hoogendoorn, W.H.K. Lam, U. Weidmann

– flurin.haenseler@epfl.ch













# HOLISTER GO

-















#### Pedestrian flows in train stations



#### F. S. Hänseler.

Modeling and estimation of pedestrian flows in train stations. PhD thesis, Ecole Polytechnique Fédérale de Lausanne, 2016.

Highway Capacity Manual.
Transportation Research Board.
Washington, DC, 2000.