HKSTS Post-Conference Workshop

A macroscopic loading model for dynamic, multi-directional and congested pedestrian flows

Flurin S. Hänseler, William H.K. Lam, Michel Bierlaire

Hong Kong, December 16, 2014
Modeling of pedestrian behavior

Levels of pedestrian behavior [HB04]

- **strategical**: choice of departure time and activity pattern
- **tactical**: choice of activity scheduling and route
- **operational**: en-route path choice, walking behavior
Modeling of pedestrian behavior

Levels of pedestrian behavior [HB04]

- **strategical**: choice of departure time and activity pattern
- **tactical**: choice of activity scheduling and route
- **operational**: en-route path choice, walking behavior

This work:

- focus on operational level
- interaction across levels kept in mind

→ development of macroscopic network loading model
Unsteady, anisotropic and congested flow

Figure: Passageway in Central Station (MTR), Hong Kong
Aggregate pedestrian flow models

- link transmission models/queuing networks [CS94, Løv94]
 - interaction between links neglected
- cell transmission models [ASKT07, GHW11, HBFM14]
 - inherent assumption of isotropy
- continuum models [Hug02, HWZ⁺09, HvWKDD14]
 - expensive, particularly for multi-class applications
Aggregate pedestrian flow models

- link transmission models/queuing networks \([\text{CS94, Løv94}]\)
 - interaction between links neglected
- cell transmission models \([\text{ASKT07, GHW11, HBFM14}]\)
 - inherent assumption of isotropy
- continuum models \([\text{Hug02, HWZ}^+09, HvWKDD14}]\)
 - expensive, particularly for multi-class applications

Idea: ‘cell-based link-transmission model’
\(\rightarrow\) stream-based pedestrian fundamental diagram \([\text{WLC}^+10, XW14}\]
Decomposition of pedestrian flow into streams

- contiguous area ξ of size A_ξ
- each stream $\sigma \in \Sigma_\xi$ characterized by
 - direction (exogenous)
 - area occupation m_σ^ξ
 - uni-directional velocity V_ξ^σ

Stream-based fundamental diagram $f(m)$
- bounded velocity: $0 \leq V_\xi^\sigma \leq V_f$, $\forall \sigma \in \Sigma_\xi$
- concave density-speed relation: $\partial V_\xi^\sigma / \partial m_\sigma^\xi' \leq 0$, $\forall \sigma, \sigma' \in \Sigma_\xi$
- speed and density vectors: $v^\Sigma_\xi = [V_\sigma / V_f]$, $m^\Sigma_\xi = [m_\sigma]$

$$v_\xi^\sigma = f_\xi^\sigma (m^\Sigma_\xi, v^\Sigma_\xi; A_\xi)$$

- several specifications available [WLC$^+$10, XW14, FL15]
Time, space and demand

- time interval $\tau \in \mathcal{T}$
 - choice of $\Delta t = |\tau|$ crucial
- cell $\xi \in \mathcal{X}$
 - convex space partitioning
- route $\rho \in \mathcal{R}$
 - origin/destination cell: ξ^o_ρ, ξ^d_ρ
 - accessible network: $\mathcal{X}_\rho \subset \mathcal{X}$
- pedestrian group $\ell \in \mathcal{L}$
 - departure interval τ_ℓ
 - group size x_ℓ
 - route ρ_ℓ
Pedestrian walking network

Pedestrian network $\mathcal{G} = \{\mathcal{N}, \Lambda\}$

- \mathcal{N}: set of nodes $\nu \in \mathcal{N}$ connecting adjacent cells
- Λ: set of links $\lambda \in \Lambda$, $\lambda : \nu^o_\lambda \rightarrow \nu^d_\lambda$
 - Λ_ξ: set of links associated with cell ξ
 - Λ^σ_ξ: set of links associated with stream σ in cell ξ
 - Φ_λ^ρ, Θ_λ^ρ: set of up-/downstream adjacent links on route ρ
 - $L_\lambda > 0$: length of link λ, $L_{\text{min}} = \min_{\lambda \in \Lambda} L_\lambda$

• links: uni-directional flow
• cells: range of interaction
• nodes: flow valves/splitters
State variables and hydrodynamic flow

• state variables
 – \(m^\ell_{\lambda,\tau} \): size of group \(\ell \) on link \(\lambda \) during interval \(\tau \)
 – aggregation per link: \(m_{\lambda,\tau} = \sum_{\ell \in L} m^\ell_{\lambda,\tau} \)
 – aggregation per stream: \(m^\sigma_{\xi,\tau} = \sum_{\lambda \in \Lambda^\sigma} m_{\lambda,\tau} \)
 – aggregation per cell: \(m_{\xi,\tau} = \sum_{\lambda \in \Lambda^\xi} m_{\lambda,\tau} \)

• ‘hydrodynamic flow’ on link \(\lambda \in \Lambda^\sigma \) during interval \(\tau \)
 – for uni-directional stream: flux = density \(\times \) velocity
 – \(\Delta Q_{\lambda,\tau} = L_{\min}/L_{\lambda} m_{\lambda,\tau} f_\sigma(m^\Sigma_{\xi,\tau}) \) if \(\Delta t = \Delta L/v_f \) (CFL)
 – reaches maximum \(\Delta Q^{\text{opt}}_{\lambda,\tau} \) at \(m^{\text{opt}}_{\lambda,\tau} \)
Hydrodynamic flow capacities

- hydrodynamic inflow capacity

\[\Delta Q^{\text{in}}_{\lambda,\tau} = \begin{cases} \Delta Q^{\text{opt}}_{\lambda,\tau}, & \text{if } m_{\lambda,\tau} \leq m^{\text{opt}}_{\lambda,\tau} \\ \Delta Q_{\lambda,\tau}, & \text{otherwise} \end{cases} \]

- hydrodynamic outflow capacity

\[\Delta Q^{\text{out}}_{\lambda,\tau} = \begin{cases} \Delta Q_{\lambda,\tau}, & \text{if } m_{\lambda,\tau} \leq m^{\text{opt}}_{\lambda,\tau} \\ \Delta Q^{\text{opt}}_{\lambda,\tau}, & \text{otherwise} \end{cases} \]
Link model

- receiving capacity on link λ during interval τ

$$R_{\lambda,\tau} = \Delta Q_{\lambda,\tau}^{\text{in}}$$

- sending capacity of group ℓ on link λ during interval τ

$$S_{\lambda \to \lambda',\tau}^{\ell} = \min \left\{ m_{\lambda,\tau}^{\ell}, \frac{m_{\lambda,\tau}^{\ell}}{m_{\lambda,\tau}} \Delta Q_{\lambda,\tau}^{\text{out}} \right\}$$

- $\delta_{\lambda \to \lambda',\tau}$: turning proportions
- free-flow: full local group proceeds
- congestion: demand-proportional supply distribution
Gate model

• candidate inflow to link λ during interval τ

$$S_{\lambda,\tau} = \sum_{\lambda' \in \Phi^\rho_\lambda} \sum_{\ell \in \mathcal{L}} S^\ell_{\lambda' \rightarrow \lambda,\tau}$$

• transition flow

$$Y^\ell_{\lambda \rightarrow \lambda',\tau} = \begin{cases} S^\ell_{\lambda \rightarrow \lambda',\tau} & \text{if } S_{\lambda',\tau} \leq R_{\lambda',\tau} \\ \zeta^\ell_{\lambda \rightarrow \lambda',\tau} R_{\lambda',\tau} & \text{otherwise} \end{cases}$$

– congestion: demand-proportional supply

$$\zeta^\ell_{\lambda \rightarrow \lambda',\tau} = \frac{S^\ell_{\lambda \rightarrow \lambda',\tau}}{S_{\lambda',\tau}}$$
Propagation model

- continuity equation \(\forall \tau \in \mathcal{T}, \forall \lambda \in \Lambda, \forall \ell \in \mathcal{L} \)

\[
m_{\lambda, \tau+1}^\ell = m_{\lambda, \tau}^\ell + \sum_{\lambda' \in \Phi_\lambda^\rho_\ell} Y_{\lambda' \rightarrow \lambda, \tau}^\ell - \sum_{\lambda'' \in \Theta_\lambda^\rho_\ell} Y_{\lambda \rightarrow \lambda'', \tau}^\ell + W_{\lambda, \tau}^\ell
\]

- source/sink term
Specification: En-route path choice model

Potential field-based model (see e.g. [GHW11, HBFM14])

- route-specific node potential $P_{\nu, \tau}^\rho$
 - e.g. $P_{\nu, \tau}^\rho \sim$ shortest path distance from node ν to cell ξ_{ρ}^d along route ρ for traffic conditions prevalent during interval τ

- logit model ($\lambda' \in \Theta_\lambda^\rho$)

$$
\delta_{\lambda \rightarrow \lambda', \tau}^\rho = \frac{\exp\{-P_{\nu, \tau}^\rho\}}{\sum_{\lambda'' \in \Theta_\lambda^\rho} \exp\{-P_{\nu, \tau}^\rho\}}
$$
Specification: Pedestrian fundamental diagram

• model by Xie and Wong, 2014 \([XW14]\)

\[
\nu_\sigma = \exp \left\{ -\vartheta \left(\frac{m_\xi}{A_\xi} \right)^2 \right\} \prod_{\sigma' \in \Sigma_\xi} g(m_\sigma, m_{\sigma'}, \nu_\sigma, \nu_{\sigma'}, \varphi_{\sigma,\sigma'})
\]

- isotropic reduction in speed
- reduction due to pair-wise interaction of streams

• next slide: illustration for counter-flow \((\alpha = 1.0, \beta = 0.132, \vartheta = 0.065 \text{ m}^2; \text{see Xie and Wong, 2014, for details})\)
Specification: Pedestrian fundamental diagram

![Diagram showing the relationship between density ratio and normalized speed of stream 1. Key points include:
- \(\rho_1 > \rho_2 \rightarrow v_1 > v_2 \) (upward direction)
- \(\rho_1 < \rho_2 \rightarrow v_1 < v_2 \) (downward direction)

Total density is given by \(\rho_1 + \rho_2 \), and is in units of \(\text{m}^{-2} \). Density ratio is \(\frac{\rho_1}{\rho_1 + \rho_2} \). Normalized speed of stream 1 is \(\frac{v_1}{v_f} \).]
Final remarks

Conclusions:

- need for accurate yet affordable network loading model
- pedestrian flow often unsteady, anisotropic and congested
- idea: ‘cell-based link-transmission model’
 - key: stream-based pedestrian fundamental diagram

Next steps:

- implementation (almost complete)
- consideration of test cases/case study
- calibration
HKSTS Post-Conference Workshop:
A macroscopic loading model for dynamic, multi-directional and congested pedestrian flows
Flurin S. Hänseler, William H.K. Lam, Michel Bierlaire

Financial support by SNSF, SBB-CFF-FFS, EPFL and PolyU is gratefully acknowledged.

– flurin.haenseler@epfl.ch

G. Flötteröd and G. Lämmel.
Bidirectional pedestrian fundamental diagram.

Collection, spillback, and dissipation in pedestrian evacuation:
A network-based method.
Bibliography III

R. L. Hughes.
A continuum theory for the flow of pedestrians.

S. P. Hoogendoorn, F. L. M. van Wageningen-Kessels, W. Daamen, and D. C. Duives.
Continuum modelling of pedestrian flows: From microscopic principles to self-organised macroscopic phenomena.

G. G. Løvås.
Bidirectional pedestrian stream model with oblique intersecting angle.

S. Xie and S. C. Wong.
A Bayesian Inference Approach to the Development of a Multidirectional Pedestrian Stream Model.