Choice set generation for iterated DTA simulations

Gunnar Flötteröd and Michel Bierlaire

May 4, 2011
Introduction

- A path is a connected sequence of nodes in a network
- Concept of “path” carries over to “travel plan”
- DTA simulations: huge (path) choice sets
- Objective: efficient path sampling from arbitrary distributions
Outline

Relevance of choice set modeling

The Metropolis-Hastings algorithm

Metropolis-Hastings sampling of paths

Simple example

Tel-Aviv example

Outlook & summary
Outline

Relevance of choice set modeling

The Metropolis-Hastings algorithm

Metropolis-Hastings sampling of paths

Simple example

Tel-Aviv example

Outlook & summary
Choice process

- choice process: decision maker n...
 1. considers a set C_n of alternatives
 2. selects one alternative i from that set
- two modeling questions:
 1. what choice set C_n is considered?
 2. given C_n, what choice i is made?
Choice set and choice

- choice in the presence of an uncertain choice set

\[P_n(i) = \sum_{C_n \subseteq C} P_n(i|C_n)P_n(C_n) \]

- simulation: draw from \(P_n(i) \) by
 1. drawing \(C_n \) from \(P_n(C_n) \)
 2. drawing \(i \) from \(P_n(i|C_n) \)

- the choice set is decisive for the simulated choice!
Modeling of path choice sets

- difficult because real choice set is typically not observable
- two broad classes of methods
 - modeling of consideration sets
 - deterministic (e.g., K-SP) or stochastic (randomized SP)
 - unrealistic: fail to capture the chosen alternative
 - assume that decision maker considers all alternatives
 - also unrealistic
 - sampling protocol generates operational subset
 - correct for sampling in the estimation
Outline

Relevance of choice set modeling

The Metropolis-Hastings algorithm

Metropolis-Hastings sampling of paths

Simple example

Tel-Aviv example

Outlook & summary
How to sample from large (path) choice sets?

• approach
 – give every path \(i \in C \) a weight \(b(i) > 0 \)
 – sampling probability \(q(i) \) shall be \(\propto b(i) \)

• direct sampling from \(q(i) \) requires path enumeration

\[
q(i) = \frac{b(i)}{\sum_{j \in C} b(j)}
\]

• but pair-wise comparison of paths is easily done

\[
\frac{q(i)}{q(j)} = \frac{b(i)}{b(j)}
\]
Metropolis-Hastings (MH) algorithm

1. set iteration counter \(k = 0 \)
2. select arbitrary initial state \(i^k \)
3. repeat beyond stationarity
 3.1 draw candidate state \(j \) from proposal distribution \(q(i^k, j) \)
 3.2 compute acceptance probability
 \[
 \alpha(i^k, j) = \min \left(\frac{b(j)q(j, i^k)}{b(i^k)q(i^k, j)}, 1 \right)
 \]
 3.3 with probability \(\alpha(i^k, j) \), let \(i^{k+1} = j \); else, let \(i^{k+1} = i^k \)
 3.4 increase \(k \) by one
Convergence of MH algorithm

• given
 – a finite state space
 – positive weights $b(i)$
 – an irreducible1 proposal distribution $q(i, j)$

MH converges to stationary distribution2 $b(i)/\sum_j b(j)$

• proposal distribution $q(i, j)$ crucial for convergence speed
 – too little variability: slow convergence
 – too much variability: random search

1 every state can (eventually) reach every other state
2 long-term state coverage of the process
Outline

Relevance of choice set modeling

The Metropolis-Hastings algorithm

Metropolis-Hastings sampling of paths

Simple example

Tel-Aviv example

Outlook & summary
State space

• a state $i = (\Gamma, a, b, c)$ consists of
 – a path Γ
 – three node indices $a < b < c$ within that path

• node indices simplify computation of transition probabilities
Weights

- intuitive: weight $\exp[-\mu \delta(\Gamma)]$ with path cost $\delta(\Gamma)$ and $\mu \geq 0$
- there are $|\Gamma|(|\Gamma| - 1)(|\Gamma| - 2)/6$ states with the same Γ
- corrected weights:

$$b(i) = \frac{\exp[-\mu \delta(\Gamma)]}{|\Gamma|(|\Gamma| - 1)(|\Gamma| - 2)/6}$$
Proposal distribution

- SHUFFLE operation
 - re-sample (uniformly) $a < b < c$ within path Γ

- SPLICE operation
 - sample a node v “near” the path segment $\Gamma(a) \ldots \Gamma(c)$
 - connect $\Gamma(a)$ to v
 - connect v to $\Gamma(c)$
 - let new b point at v, update c

- combined proposal: randomly select one procedure

- [[complicated computation of proposal probabilities]]
SPLICE example

A \rightarrow B \rightarrow C \rightarrow D \rightarrow E

\begin{align*}
\text{origin} & \quad a = 2 \quad b = 3 \\
\text{destination} & \quad c = 4
\end{align*}
SPLICE example

A \rightarrow B \rightarrow C \rightarrow D \rightarrow E

a = 2 \quad b = 3 \quad c = 4

origin \quad destination
SPLICE example

Graph:

- Nodes: A, B, C, D, E, F, G
- Edges:
 - A → B (a = 2)
 - B → C (b = 3)
 - D → E
 - G → D
 - F → G

- Parameters:
 - a = 2
 - b = 3
 - c = 4

Origin: A
Destination: E
SPLICE example

A → B → C → D → E

\(a' = 2\)
\(a = 2\)
\(b = 3\)

\(b' = 4\)

\(c' = 5\)
\(c = 4\)
Outline

Relevance of choice set modeling

The Metropolis-Hastings algorithm

Metropolis-Hastings sampling of paths

Simple example

Tel-Aviv example

Outlook & summary
Simple example
Simple example: correlation within the chain

(a) $\mu = 0.0$ (b) $\mu = 2.0$ (c) $\mu = 4.0$

- for independent draws, extract every 2500th path
Simple example: scatterplots

\(\chi^2 \) test does not reject hypothesis: sample from target distr.
- test statistics: 198.93, 177.29, 157.69 for \(\mu = 0, 2, 4 \)
- 0.5, 0.9, 0.95 quantiles: 168.33, 192.95, and 200.33
Outline

Relevance of choice set modeling

The Metropolis-Hastings algorithm

Metropolis-Hastings sampling of paths

Simple example

Tel-Aviv example

Outlook & summary
Tel-Aviv example: network
Tel-Aviv example: within-chain correlation

(a) $\mu = 0.01$ \hspace{1cm} (b) $\mu = 0.02$ \hspace{1cm} (c) $\mu = 0.04$

- for independent draws, extract every 10 000th route
Tel-Aviv example: length distribution

Squares: $\mu = 0.01$, circles: $\mu = 0.02$, triangles: $\mu = 0.04$.
Computational performance

• performance is quite problem specific
 – narrow target distribution → faster
 – origin/destination nearby → faster
 – small overall network (or preprocessing) → faster
 – missing some routes uncritical → faster
 – simple proposal distribution → probably faster

• Tel-Aviv example: order of $10^3 \ldots 10^4$ iterations per minute
• main bottleneck: many shortest path tree computations
Outline

Relevance of choice set modeling

The Metropolis-Hastings algorithm

Metropolis-Hastings sampling of paths

Simple example

Tel-Aviv example

Outlook & summary
Outlook: choice set formation in the simulation loop

travel behavior

travel demand
- route choice
- dpt. time choice
- mode choice
- ...

network supply
- traffic flow
- congestion, delay
- reliability
- ...

network conditions
Outlook: choice set formation in the simulation loop

travel demand

- choice set
- choice

travel behavior

network supply
- traffic flow
- congestion, delay
- reliability
- ...

network conditions
Summary

• Metropolis-Hastings sampling of paths
 – generalizes to all-day travel plans
 – well-specified choice set distributions

• operational implementation
 – upcoming re-implementation of BIOROUTE
 – quite efficient (but can be tuned further)

• consistency with iterated DTA simulations
 – iterated simulation constitutes Markov chain
 – so does Metropolis-Hastings algorithm
 – specification of one joint chain