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New interest in pedestrian modeling

• Urban growth and its pressure on pedestrian facilities
• Availability of new tracking data
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In airports...

• +38% air passengers
(2008-2013)

• Surveying [LUS14], space
syntax [KBM14]

[KMM15]
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In hospitals...

• US: Hospital-building and
-renovation boom [HCSL08]

• Time use of nurses using
RFID [HCSL08]
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In museums...

• Louvre: +35% visitors
(2004-2014)

• Understanding congestion
using Bluetooth [YSR+14]
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In train stations...

• Utrecht Central Station: +14% visitors by 2020
• Activity location choice using WiFi and Bluetooth [Ton14]
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Challenges of pedestrian facilities

• Knowing the number of visitors
• Determining the source of congestion
• Localizing points of interest
• Modifying/building new facilities
• Defining timetables
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Data from communication antennas

+

• Large sample size
• Low cost
• Low privacy risk
• No recall bias
• No need to distribute devices
• Tracking non-travelers
• Full coverage of the facility

–

• No socioeconomics
• Not representative
• Privacy risk
• Low frequency
• Low precision
• No stops
• No activity purpose
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Goal: Understanding pedestrian demand

• Where, when and for how long do pedestrians perform
activities in pedestrian facilities?

• Based on communication network traces from existing
antennas
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Activity path approach

Raw data

Activity-episode sequence detection

Activity path choice model

Location choice model

Pre-processing

Modeling
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Activity-episode sequence detection

• Explicit modeling of the imprecision in the measure
• Usage of prior knowledge of the infrastructure
• Avoidance of the pingpong effect
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Activity-path choice model

• No tours, no priorities
• Managing large choice sets
• Unique utility for activity type, time-of-day and duration
choices
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Location choice model

• Including panel data
• Correcting for serial correlation
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More details

• Introduction: Chapter 1 in [Dan15b]

• Literature review: Chapter 2 in [Dan15b]
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Data requirement

• Required
– Localization data with full coverage of the facility
– Semantically-enriched routing graph for pedestrians

• Not required but often available information
– Potential attractivity measure
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Data requirement: Localization
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Data requirement: Map (POI + network)
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Potential attractivity measure

For individual n, point of interest x , start and end times t− and t+:

Sx ,n(t−, t+) =

∫ t+

t=t−
δx ,n(t) · attn(x , t)dt

with
• Time constraints δx ,n
(e.g., train or class schedules, opening hours)

• Destination attractivity attn(x , t)
(e.g., classroom, platform, scene aggregate occupancy)
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Data requirement: Potential attractivity
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Methodology

Input
• Localization measurement
• Semantically-enriched
routing graph

• Potential attractivity
measure

Output
• Set of candidate
activity-episode sequences
associated with the
likelihood to be the true one
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Probabilistic measurement model:
a Bayesian approach

P(a1:Ψ|m̂1:J) ∝ P(m̂1:J |a1:Ψ) · P(a1:Ψ)

Activity probability

Measurement likelihood

Prior

with
• measurement m̂ = (x̂ , t̂), (m̂1, m̂2, ..., m̂j , ..., m̂J) = m̂1:J

• activity episode a = (x , t−, t+), (a1, a2, ..., aψ, ..., aΨ) = a1:Ψ
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Measurement likelihood

P(m̂1:J |a1:Ψ) =
Ψ∏
ψ=1

P(m̂ψ
1:J |aψ) ⇔ Independence between

activities

=
Ψ∏
ψ=1

J∏
j=1

P(m̂ψ
j |aψ) ⇔ Independence between

measurements

=
Ψ∏
ψ=1

J∏
j=1

P(x̂ψj |xψ) ⇔ No time measurement
error
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Prior: Potential attractivity measure

P(a1:Ψ) =
Ψ∏
ψ=1

P(aψ)

=
Ψ∏
ψ=1

P(xψ, t
−
ψ , t

+
ψ )

=
Ψ∏
ψ=1

Sxψ ,n(t−ψ , t
+
ψ )∑

x∈POI Sx ,n(t−ψ , t
+
ψ )
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Probabilistic measurement model:
a Bayesian approach

P(a1:Ψ|m̂1:J) ∝ P(m̂1:J |a1:Ψ) · P(a1:Ψ)

Activity probability

Measurement likelihood

Prior
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Generation of activity-episode sequences
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Generation of activity-episode sequences

with ttxj ,xj+1 the travel time from xj to xj+1
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Generation of activity-episode sequences
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Intermediary measurements

Eliminate intermediary measurements if

E (t+)− E (t−) < Tmin

since we generate an activity episode at each measurement.
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Sequence elimination

We keep L (here, L = 5) most likely activity-episode sequences
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Results: me on EPFL campus, raw data
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Results: me on EPFL campus, truth
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Results: me on EPFL campus, model, L = 1
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Results: me on EPFL campus, model, L = 100
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Results: an employee on EPFL campus, L = 20
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Results: an computer science student, L = 20
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Results: an employees?, L = 20
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Detection: Results for full population

• 3 activity episodes on average
• 1h37 on each activity
• Devices detected in restaurant during lunch break (see figure)
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More details

• Article: [DFB14]

• Chapter 3 in [Dan15b]
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Modeling assumption

• Sequential choice:
1. activity type, sequence, time of day and duration
2. destination choice conditional on 1.

• Motivations:
– Behavioral: precedence of activity choice over destination

choice [BBA01, AT04, HB04, AZBA12, KR13]
– Dimensional: destinations × time × position in the sequence is

not tractable
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Observations: activity patterns in a transport hub

Waiting for the train
(on platform 9)

Having a tea
(in Starbucks)
Buying a ticket

(at the machine)

Activity types

7:
40

7:
43

7:
48

8:
01

8:
03

8:
12
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Activity network
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Activity path
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Sampling strategies for choice set generation

• Simple random sampling (SRS)
• Importance sampling using Metropolis-Hastings algorithm

[FB13] and strategic sampling [LK12]
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Metropolis-Hastings sampling of paths

origin

v

destination

D
ra
g

Fix here Fix here

Sp
lic
e
op

er
at
io
n

Shuffle operation
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Metropolis-Hastings sampling of paths

• Sample paths from given distribution, without full enumeration
• To be defined:

– Target weight: Also with non-node-additive utility
– Proposal distribution:

Pinsert =
e−µ̃δSP (origin,v)+δSP (v ,destination)∑
w e−µ̃δSP (origin,w)+δSP (w ,destination)

Relies on shortest paths, node-additive cost.
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Strategic sampling

• Target weight:
previously estimated model

• Proposal distribution:
previously estimated model using only time-of-day preferences
(node-additive)
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Utility structure

• Utility of activity pattern:
– Node utility V (Ak,t)

I time-of-day preferences
– Activity-episode utility V (a)

I satiation effects: decreasing marginal utility, η ln(duration)
I scheduling constraints: schedule delay

– Activity path utility V (Γ)
I primary activity
I number of episodes

• Sampling correction

µ

(
K∑

k=1

T∑
τ=1

V (Ak,τ ) +
∑

a∈A1:T

V (a) + V (Γ)

)
+ ln

kΓn

b(Γ)
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Case study: pedestrians on EPFL campus

• 13’000 people per day
• 8 activity types:

– classrooms,
– shops,
– offices,
– restaurant,
– library,
– lab,
– other and
– not being detected

• 12 time units in the activity network, from 7am to 7pm
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Proposal distribution (using simple random sampling)

Robust
Coeff. Asympt.

Description estimate std. error t-stat
βNA, 17-19, employees 0.263 0.0302 8.70
βNA, 14-17, students -0.222 0.191 -1.16
βNA, 7-8, students 0.349 0.0281 12.44
βNA, 7-9, employees 0.326 0.0262 12.43
βNA, 17-19, students 1.14 0.187 6.09
βclassroom, 12-14, students -0.336 0.337 -1.00
βclassroom, 7-12, employees -0.723 0.397 -1.82
βclassroom, 7-12, students 0.598 0.262 2.28
βlibrary, 14-19, employees -0.624 0.553 -1.13
βlibrary, 12-14, employees -0.575 0.481 -1.20
βlibrary, 7-12, employees -1.57 0.508 -3.09
βoffice, 14-19, employees 1.41 0.246 5.73
βoffice, 7-12, employees 1.12 0.228 4.92
βrestaurant, 14-19, students -0.410 0.185 -2.21
βrestaurant, 12-14, employees 0.136 0.0259 5.26
βrestaurant, 12-14, students 0.665 0.286 2.32

...
Number of observations = 1087
Number of estimated parameters = 43
L(β0) = −5016.636
L(β̂) = −453.225
ρ2 = 0.910
ρ̄2 = 0.901
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Target weight (using simple random sampling)

Robust
Coeff. Asympt.

Description estimate std. error t-stat
βlibrary 7-12, employees -2.08 0.422 -4.93
βoffice 7-12, 14-19, employees 1.69 0.393 4.30
βrestaurant 12-14, employees 1.22 0.502 2.43
βshop 12-14, students -7.36 1.24 -5.92
βshop 7-12, 14-19, students -1.16 0.538 -2.16
βNA 7-8, students 4.27 0.995 4.29
βNA 8-12, students 1.40 0.498 2.82
βNA 17-19, students 1.75 0.568 3.08
βNA 9-17, employees 1.43 0.296 4.84
βNA 7-9, 17-19, employees 3.34 0.554 6.02
ηOffice, Lab, Classroom 5.22 0.764 6.83
ηRestaurant, Library, Other 7.85 1.11 7.10
ηShop 7.33 0.894 8.20
ηNA 2.75 0.393 7.00
β3+ lab episodes -5.03 0.952 -5.28
β3+ resto episodes -2.50 0.759 -3.29

...
Number of observations = 1087
Number of estimated parameters = 22
L(β0) = −5016.636
L(β̂) = -47.218
ρ2 = 0.991
ρ̄2 = 0.986
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Model using strategic sampling

Robust
Coeff. Asympt.

Description estimate std. error t-stat
βclassroom 7-12, students 0.478 0.238 2.01
βrestaurant 12, students 2.69 0.527 5.10
βshop 14-19, students 1.46 0.343 4.27
βNA 7-12, students 2.33 0.285 8.17
βNA 17-19, students 2.83 0.343 8.24
βNA 7-9, 17-19, employees 2.91 0.303 9.60
ηoffice, lab, classroom -6.85 0.379 -18.09
ηrestaurant, library, other -6.58 0.360 -18.31
ηshop -3.72 0.278 -13.40
ηNA -7.63 0.541 -14.12
β0 restaurant episode 4.11 0.365 11.28
β0 classroom episodes, employees 10.3 0.887 11.65
β1 shop episodes -3.87 0.573 -6.76
β2+ shop episodes -3.49 1.08 -3.24
β0 library episode, employees 2.72 0.335 8.10
β0 library episode, students 4.77 0.495 9.64

...
Number of observations = 1087
Number of estimated parameters = 39
L(β0) = −5016.636
L(β̂) = -400.633
ρ2 = 0.920
ρ̄2 = 0.912
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Validation

55 / 78



More details

• Conference proceeding: [DB15]

• Chapter 4 in [Dan15b]
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Goal

• Model location choice conditional on an activity type
• Adapted to panel data
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Static model

Uint = Vint + εint

Ignores two aspects:
• Dynamics
• Serial correlation
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Dynamic model without agent effect

Uint = Vint + ρyin(t−1) + εint

Assumes
• Dynamic process of order one
• Location-specific dependence
• Previous choice yin(t−1) independent of error term εint
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Relaxing the independence assumption of error terms

• Agent effect αin: time-invariant factor (“between” individuals
variability)

• Unobserved heterogeneity ε′int : short-term variation of
probabilities (“within” an individual variability)

Uint = Vint + ρyin(t−1) + αin + ε′int

Endogeneity issue:
• yin(t−1) and αin are correlated
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An approach by Wooldridge [Woo05]

For activity location i , individual n, at time t:

Uint = Vint + ρyin(t−1) + αin + ε′int

αin = a + byin0 + c ′x̄n + ξin

Lagged variable Agent effect

∼ N(0; Σα)

Endogeneity issue solved [Woo05]
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3 different models

Static model
Dynamic model

without agent effect
Dynamic model
with agent effect

ρ = 0 ρ 6= 0 ρ 6= 0
a, b, c, σ2

α = 0 a, b, c , σ2
α = 0 a, b, c , σ2

α 6= 0
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Case study: EPFL catering locations
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Two specifications of the agent effect

• First choice
αin = a + byin0 + ξn

• First choice and frequency
αin = a + byin0 + cy count

int + ξn

∑t−1
t′=1 I (yint′)
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4 models estimated

Static model Dynamic model
without agent effect

Dynamic model with
agent effect correction

First choice First choice and frequency

ρ = 0 ρ 6= 0 ρ 6= 0 ρ 6= 0
a = 0 a = 0 a 6= 0 a 6= 0
b = 0 b = 0 b 6= 0 b 6= 0
c = 0 c = 0 c = 0 c 6= 0
σ2
α = 0 σ2

α = 0 σ2
α 6= 0 σ2

α 6= 0
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Estimation results

• Distance has a negative impact
• Yearly evaluation has a positive impact
• Beer after 14:00 has a positive impact
• Cost has a negative impact
• Dinner has a positive impact
• Capacity has a positive impact
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Likelihood ratio tests

Static model Dynamic model
without agent effect

Dynamic model with
agent effect correction

First choice
First choice

and frequency

354.003 (> 5.99) 920.354 (> 58.12) 16.172 (> 5.99)
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Validation

Predicting last observations based on past observations

Static model
Dynamic model

without agent effect
Dynamic model with
agent effect correction

First choice
First choice

and frequency
Sum of the squares of the errors 232.95 204.01 184.16 173.85
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Elasticities to price

70 / 78



Forecasting: opening a new catering location

Nesting structure with the most similar alternative
• Nesting parameter θ = 1: logit model, independent error terms
• Nesting parameter θ →∞: perfectly correlated error terms
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Forecasting: opening a new catering location
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Activity-episode sequence detection

• Explicit modeling of the imprecision in the measure
• Usage of prior knowledge of the infrastructure
• Avoidance of the pingpong effect
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Activity-path choice model

• No tours, no priorities
• Managing large choice sets
• Unique utility for activity type, time-of-day and duration
choices
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Location choice model

• Including panel data
• Correcting for serial correlation
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Limitations

• Activity purpose is extracted from map data
• No mode detection
• No congestion
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Future work

• Congested case study
• Include the uncertainty from detection in modeling
• Metropolis-Hastings algorithm for the sampling of activity
paths

• More complex correlation structure for the choice of an
activity path

• Include other sources of endogeneity (group, queue)
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Thank you

PhD thesis:
Activity choice modeling
for pedestrian facilities
Antonin Danalet

– antonin.danalet@epfl.ch
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Privacy issues in this thesis

• EPFL ethics committee:
– “No personal identifier when sharing data”

• In practice:
– We have no access to MAC addresses in our dataset
– The dataset is public [Dan15a]
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