Introduction to disaggregate demand models

Michel Bierlaire

Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne

Outline

Outline

Choice theory

- Operational model
 - Market shares
- 6 Willingness to pay
- 6 Price optimization

2 / 58

Demand models

- Supply = infrastructure
- Demand = behavior, choices
- Congestion = mismatch

3 / 58

Demand models

- Usually in OR:
- optimization of the supply
- for a given (fixed) demand

Aggregate demand

- Homogeneous population
- Identical behavior
- Price (P) and quantity (Q)
- Demand functions: P = f(Q)
- Inverse demand: $Q = f^{-1}(P)$

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

5 / 58

Disaggregate demand

- Heterogeneous population
- Different behaviors
- Many variables:
 - Attributes: price, travel time, reliability, frequency, etc.
 - Characteristics: age, income, education, etc.

January 28, 2013

FEDERALE DE LAUSANN

6 / 58

• Complex demand/inverse demand functions.

Choice theory

- Operational model
- 4 Market shares
- 5 Willingness to pay
- 6 Price optimization

M. Bierlaire (TRANSP-OR ENAC EPFL) Introduction to disaggregate demand models

(2) (3)

Choice

Choice: outcome of a sequential decision-making process

- Definition of the choice problem: How do I get to work?
- Generation of alternatives: car as driver, car as passenger, train
- Evaluation of the attributes of the alternatives: price, time, flexibility, comfort

FEDERALE DE LAUSANN

8 / 58

- Choice: decision rule
- Implementation: travel

Choice theory

A choice theory defines

- decision maker
- alternatives
- attributes of alternatives
- decision rule

Decision-maker

The decision maker is

- an individual or a group of persons.
- If group of persons, we ignore internal interactions.
- Important to capture difference in tastes and decision-making processes.
- Socio-economic characteristics: age, gender, income, education, etc.

Alternatives

Choice set

- Environment: universal choice set (\mathcal{U})
- Individual *n*: choice set (C_n)

Choice set generation

- Availability
- Awareness

Choice set type

Continuous

Discrete

Continuous vs. discrete

Continuous choice set

Discrete choice set

$$C_n = \{ Car, Bus, Bike \}$$

M. Bierlaire (TRANSP-OR ENAC EPFL) Introduction to disaggregate demand models

э

Attributes

Describe the item:

- cost
- travel time
- walking time
- comfort
- bus frequency
- etc.

Decision rules

Neoclassical economic theory

Preference-indifference operator \gtrsim

reflexivity

$$a\gtrsim a \;\; orall a\in {\mathcal C}_n$$

transitivity

$$a\gtrsim b ext{ and } b\gtrsim c \Rightarrow a\gtrsim c \ \ \forall a,b,c\in \mathcal{C}_n$$

$$a\gtrsim b \text{ or } b\gtrsim a \ \, orall a, b\in \mathcal{C}_n$$

Decision rules

Utility

$$\exists U_n : \mathcal{C}_n \longrightarrow \mathbb{R} : a \rightsquigarrow U_n(a) \text{ such that}$$
$$a \gtrsim b \Leftrightarrow U_n(a) \ge U_n(b) \quad \forall a, b \in \mathcal{C}_n$$

Remarks

- Utility is a latent concept
- It cannot be directly observed

Context for the decision maker

- $Q = \{q_1, \ldots, q_L\}$ consumption bundle
- q_i is the quantity of product i consumed
- Utility of the bundle:

$$U(q_1,\ldots,q_L)$$

- $Q_a \gtrsim Q_b$ iff $U(q_1^a, \ldots, q_L^a) \geq U(q_1^b, \ldots, q_L^b)$
- Budget constraint:

$$\sum_{i=1}^{L} p_i q_i \leq I.$$

Decision-maker solves the optimization problem

$$\max_{q\in\mathbb{R}^L} U(q_1,\ldots,q_L)$$

subject to

$$\sum_{i=1}^{L} p_i q_i = I.$$

Example with two products

$$\max_{q_1,q_2} U = \beta_0 q_1^{\beta_1} q_2^{\beta_2}$$

subject to

$$p_1q_1 + p_2q_2 = I.$$

PEDERALE DE LAUSANNE

17 / 58

January 28, 2013

Example with two products

$$\max_{q_1,q_2} U = \beta_0 q_1^{\beta_1} q_2^{\beta_2}$$

subject to

 $p_1q_1 + p_2q_2 = I.$

Lagrangian of the problem

$$L(q_1, q_2, \lambda) = \beta_0 q_1^{\beta_1} q_2^{\beta_2} + \lambda (I - p_1 q_1 - p_2 q_2).$$

Necessary optimality condition (KKT)

$$\nabla L(q_1,q_2,\lambda)=0$$

ILVAN2L-OK

M. Bierlaire (TRANSP-OR ENAC EPFL) Introduction to disaggregate demand models

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

18 / 58

KKT

$$\begin{array}{rclcrcrc} \beta_0 \beta_1 q_1^{\beta_1 - 1} q_2^{\beta_2} & - & \lambda p_1 & = & 0 \\ \beta_0 \beta_2 q_1^{\beta_1} q_2^{\beta_2 - 1} & - & \lambda p_2 & = & 0 \\ p_1 q_1 + p_2 q_2 & - & I & = & 0. \end{array}$$

We have

$$\begin{array}{rcl} \beta_0 \beta_1 q_1^{\beta_1} q_2^{\beta_2} & - & \lambda p_1 q_1 & = & 0 \\ \beta_0 \beta_2 q_1^{\beta_1} q_2^{\beta_2} & - & \lambda p_2 q_2 & = & 0 \end{array}$$

so that

$$\lambda I = \beta_0 q_1^{\beta_1} q_2^{\beta_2} (\beta_1 + \beta_2)$$

KKT (ctd.) Therefore $\beta_0 q_1^{\beta_1} q_2^{\beta_2} = \frac{\lambda I}{(\beta_1 + \beta_2)}$ As $\beta_0\beta_2 q_1^{\beta_1}q_2^{\beta_2}=\lambda p_2q_2$, we obtain (assuming $\lambda \neq 0$) $q_2 = \frac{I\beta_2}{p_2(\beta_1 + \beta_2)}$ Similarly, we obtain $q_1 = \frac{I\beta_1}{p_1(\beta_1 + \beta_2)}$

Demand functions

$$q_1 = \frac{I\beta_1}{p_1(\beta_1 + \beta_2)}$$
$$q_2 = \frac{I\beta_2}{p_2(\beta_1 + \beta_2)}$$

Utility and discrete choice set

Binary optimization

$$\max_{q\in\{0,1\}^L}U=U(q_1,\ldots,q_L)$$

with

$$q_i = \begin{cases} 1 & \text{if product } i \text{ is chosen} \\ 0 & \text{otherwise} \end{cases}$$

and

$$\sum_i q_i = 1.$$

No optimality condition. Calculus cannot be used anymore.

Methodology

Utility functions

- Do not work with demand functions anymore
- Work with utility functions
- U is the "global" utility
- Define U_i the utility associated with product *i*.
- It is a function of the attributes of the product (price, quality, etc.)
- We say that product *i* is chosen if

$$U_i \geq U_j \quad \forall j.$$

Example

Two transportation modes

$$U_1 = -\beta t_1 - \gamma c_1$$

$$U_2 = -\beta t_2 - \gamma c_2$$

with β , $\gamma > 0$

$$U_1 \geq U_2$$
 iff $-\beta t_1 - \gamma c_1 \geq -\beta t_2 - \gamma c_2$

that is

$$-rac{eta}{\gamma}t_1-c_1\geq -rac{eta}{\gamma}t_2-c_2$$

or

$$c_1-c_2\leq -rac{eta}{\gamma}(t_1-t_2)$$

IKAN2H-UK

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

23 / 58

・ロト ・聞ト ・ヨト ・ヨト

January 28, 2013

Choice theory

Example

Choice theory

Example

Assumptions

Decision-maker

- perfect discriminating capability
- full rationality
- permanent consistency

Analyst

- knowledge of all attributes
- perfect knowledge of \gtrsim (or $U_n(\cdot)$)
- no measurement error

Must deal with uncertainty

- Random utility models
- For each individual *n* and alternative *i*

$$U_{in} = V_{in} + \varepsilon_{in}$$

and

$$P(i|\mathcal{C}_n) = P[U_{in} = \max_{j \in \mathcal{C}_n} U_{jn}] = P(U_{in} \ge U_{jn} \ \forall j \in \mathcal{C}_n)$$

Daniel L. McFadden

- UC Berkeley 1963, MIT 1977, UC Berkeley 1991
- Laureate of The Bank of Sweden Prize in Economic Sciences in Memory of Alfred Nobel 2000
- Owns a farm and vineyard in Napa Valley
- "Farm work clears the mind, and the vineyard is a great place to prove theorems"

27 / 58

2 Choice theory

Operational model

- 4 Market shares
- 5 Willingness to pay
- 6 Price optimization

28 / 58

∃ → (∃ →

January 28, 2013

Assumptions on V_{in}

$$V_{in} = V(x_{in}) = V(z_{in}, S_n)$$

Variables

- z_{in} : vector of attributes of alternative *i* for individual *n*
- S_n : vector of socio-economic characteristics of n
- $x_{in} = (z_{in}, S_n)$

Functional form

• Common assumption: Linear-in-parameter

$$V_{in} = \sum_{p} \beta_{p}(x_{in})_{p}$$

- β : vector of unknown parameters to be estimated
- Possibility for nonlinear specifications.

Assumptions on ε_{in}

- Mean: parameter to be estimated.
- Variance: parameter that cannot be estimated, must be normalized.
- Distribution: two common assumptions

Probit model

- Normal distribution
- Motivation: central limit theorem

Logit model

- Extreme value distribution
- i.i.d. across i and n
- Motivation: Gumbel's theorem

Logit model

Utility

$$U_{in} = V_{in} + \varepsilon_{in}$$

Choice probability
$$P_n(i|\mathcal{C}_n) = \frac{e^{V_{in}}}{\sum_{j \in \mathcal{C}_n} e^{V_{jn}}}.$$

- Decision-maker *n*
- Alternative $i \in C_n$

Model estimation

- Design a sampling protocol ٩
- For each individual *n* in the sample, and for each alternative *i*,
 - observe the explanatory variables x_{in}
 - observe the dependent variable, that is the choice i_n .
 - Compute the likelihood as a function of the parameters β :

$$\Lambda_n(\beta) = P_n(i_n | C_n) = \frac{e^{V_{i_n n}}}{\sum_{j \in C_n} e^{V_{j_n}}}.$$

Compute the likelihood of the whole sample: ٩

$$\mathcal{L}^*(\beta) = \prod_n \Lambda_n(\beta)$$

• Solve the maximum likelihood problem:

$$\widehat{\beta} = \operatorname{argmax}_{\beta} \log \mathcal{L}^*(\beta) = \operatorname{argmax}_{\beta} \sum_{m} \log \Lambda_n(\beta).$$

$$m$$
M. Bierlaire (TRANSP-OR ENAC EPFL) Introduction to disaggregate demand models January 28, 2013 32 / 58

January 28, 2013

32 / 58

- Demand models
- 2 Choice theory
- 3 Operational model
- 4 Market shares
- 5 Willingness to pay
- 6 Price optimization

33 / 58

(2) (3)

Aggregation

Reality

- Population composed of N individuals
- For each alternative *i*, and each individual *n*, define

$$y_{in} = \begin{cases} 1 & \text{if individual } n \text{ chooses alternative } i, \\ 0 & \text{otherwise.} \end{cases}$$

• Total number of individuals selecting item *i* in the population:

$$N(i) = \sum_{n=1}^{N} y_{in}.$$

• Market share for item *i*:

$$W(i) = N(i)/N = \sum_{n=1}^{N} y_{in}/N.$$

Forecasting

- Replace y_{in} by $P_n(i|x_n, C_n)$
- Total number of individuals selecting item *i* in the population:

$$\widehat{N}(i) = \sum_{n=1}^{N} P_n(i|x_n, C_n)$$

• Market share for item *i*:

$$\widehat{W}(i) = \widehat{N}(i)/N = \sum_{n=1}^{N} P_n(i|x_n, C_n)/N.$$

January 28, 2013

35 / 58

Demand models

- $\widehat{N}(i)$ or $\widehat{W}(i)$ are the demand models required for OR
- They can be computed for subgroups of the population

January 28, 2013

36 / 58

- They account for the heterogeneity of
 - behavior,
 - taste,
 - choice contexts.

- Demand models
- 2 Choice theory
- Operational model
- 4 Market shares
- 5 Willingness to pay
- 6 Price optimization

37 / 58

∃ → (∃ →

January 28, 2013

Value of time

Objective

- Monetary value of travel time?
- Cost benefit analysis
- Costs : CHF
- Benefits : travel time savings

Definition

Price that travelers are willing to pay to decrease the travel time.

Motivation

Total time budget is limited, saved time can be used for other activities and, therefore, has value.

Example

Utility functions

$$U_1 = -\beta t_1 - \gamma c_1$$

$$U_2 = -\beta t_2 - \gamma c_2$$

with β , $\gamma > 0$

Choice assumption

Value of time

- If utility function is linear
- the value of time is the ratio between
 - the coefficient of the "time" variable, and
 - the coefficient of the "cost" variable
- Warning: utility is not always linear
- Value of time varies with
 - trip purpose
 - transportation mode
 - trip length
 - income

ÉCOLE POLYTECHNIQL FÉDÉRALE DE LAUSANN

40 / 58

Example: model choice in Nijmegen

$$V_{car} = -0.798 - 0.110 \cdot \text{cost}_{car} - 1.33 \cdot \text{time}_{car}$$

$$V_{train} = -0.110 \cdot \text{cost}_{train} - 1.33 \cdot \text{time}_{train}$$

Value of time = -1.33 / -0.110 \approx 12 euros / h \approx 0.20 euros / min

	Case 1	Case 2
Time	2 h	1.5 h
Cost	7€	13€
Utility of train	-3.43	-3.43

Other willingness to pay indicators

- Headway (i.e. time between two buses)
- Number of transfers
- Reliability
- etc.

Same methodology:

- The model must involve the corresponding variable
- Willingness-to-pay = ratio between the coefficient of the variable and the cost coefficient

$$U = -\beta t - \gamma c - \alpha n$$

January 28, 2013

42 / 58

Value of time in Switzerland

Reference

Axhausen, K., Hess, S., Koenig, A., Abay, G., Bates, J., and Bierlaire, M. (2008). Income and distance elasticities of values of travel time savings: new Swiss results, *Transport Policy* 15(3):173-185.

Data collection

- Source for recruitment: survey "Kontinuierliche Erhebung zum Personenverkehr" (KEP) by SBB/CFF
- Stated preferences
- Questionnaire designed based on a real reference trip
- Three parts:
 - SP mode choice (car / bus or rail)
 - SP route choice (current mode or alternative mode)
 - Socio-demographics and information about the reference trip

IKAN2H-OK

くほう くほう

SP survey

Mode choice car - rail (main study version)

Travel costs:	18 Fr.	Travel costs:	23 Fr.
Total travel time:	40 minutes	Travel time:	30 minutes
congested:	10 minutes	Headway:	30 minutes
uncongested:	30 minutes	No. of changes:	0 times

$\square \qquad \leftarrow \text{Your choice} \rightarrow \qquad \square$		$\leftarrow \textbf{Your choice} \rightarrow$	
---	--	---	--

Route choice rail (main study version)

ravel costs:	20 Fr.	Travel costs:	23 Fr.
Travel time:	40 minutes	Travel time:	30 minutes
Headway:	15 minutes	Headway:	30 minutes
No. of changes:	1 times	No. of changes:	0 times

<ロ> (日) (日) (日) (日) (日)

January 28, 2013

3

44 / 58

Data

Number of observations (1225 individuals)

	Busin.	Comm.	Leis.	Shop.	Total
Mode : car/bus	6	162	186	126	480
Mode : car/rail	426	1716	2538	1104	5784
Route : bus for bus users	9	405	450	342	1206
Route : car for car users	156	846	1176	660	2838
Route : rail for car users	126	594	837	504	2061
Route : rail for rail users	324	1008	1881	288	3501
Total	1047	4731	7068	3024	15870

In average, $15870/1225\approx 13$ valid responses out of 16 per respondent.

45 / 58

Model specification

Variables

- travel time
- travel cost
- level of congestion (car)
- frequency (TC)
- number of transfers (TC)
- trip length
- income

- inertia
- car availability
- sex
- 1/2-fare CFF
- general subscription
- trip purpose

Results

	Business	Commute	Leisure	Shopping
Time TC (CHF/h)	49.57	27.81	21.84	17.73
Time car (CHF/h)	50.23	30.64	29.20	24.32
Headway (CHF/h)	14.88	11.18	13.38	8.48
CHF/transfer	7.85	4.89	7.32	3.52

Results

- Demand models
- 2 Choice theory
- Operational model
- 4 Market shares
- 5 Willingness to pay

Price optimization

49 / 58

∃ ► < ∃ ►</p>

Introduction

- Choice model captures demand
- Demand is elastic to price
- Predicted demand varies with price, if it is a variable of the model
- In principle, the probability to use/purchase an alternative decreases if the price increases.

PEDERALE DE LAUSANÍ

50 / 58

January 28, 2013

- The revenue per user increases if the price increases.
- Question: what is the optimal price to optimize revenue?

In short

- $Price \downarrow \Rightarrow profit/passenger \downarrow and number of passengers \uparrow$
- What is the best trade-off?

Revenue calculation

Number of persons choosing alternative i in the population

$$\hat{N}(i) = \sum_{s=1}^{S} N_s P(i|x_s, p_{is})$$

where

- the population is segmented into S homogeneous strata
- p_{is} is the price of item *i* in segment s
- x_s gathers all other variables corresponding to segment s
- $P(i|x_s, p_{is})$ is the choice model

ANSP-NR

• N_s is the number of individuals in segment s

Revenue calculation

Total revenue from *i*

$$R_i = \sum_{s=1}^{S} N_s P(i|x_s, p_{is}) p_{is}$$

If the price is constant across segments...

$$R_i = p_i \sum_{s=1}^{S} N_s P(i|x_s, p_i)$$

Price optimization

Optimizing the price of product i is solving the problem

$$\max_{p_i} p_i \sum_{s=1}^{S} N_s P(i|x_s, p_i)$$

Notes:

- It assumes that everything else is equal
- In practice, it is likely that the competition will also adjust the prices

Illustrative example

A binary logit model with

$$V_1 = \beta_p p_1 - 0.5$$
$$V_2 = \beta_p p_2$$

so that

$$P(1|p) = rac{e^{eta_p p_1 - 0.5}}{e^{eta_p p_1 - 0.5} + e^{eta_p p_2}}$$

ÉCOLE POLYTECHNIQUI FÉDÉRALE DE LAUSANN

54 / 58

- - E - N

January 28, 2013

Two groups in the population:

• Group 1:
$$\beta_p = -2$$
, $N_s = 600$

• Group 2: $\beta_p = -0.1$, $N_s = 400$

Assume that $p_2 = 2$.

STRANSP-OR

Illustrative example

Sensitivity analysis

- Parameters are estimated, we do not know the real value
- 95% confidence interval: $[\widehat{\beta}_{p} 1.96\sigma, \widehat{\beta}_{p} + 1.96\sigma]$
- Perform a sensitivity analysis for β_p in group 2

Sensitivity analysis

Summary

Demand models

Choice theory

- Operational model
- Market shares
- 6 Willingness to pay
- 6 Price optimization

58 / 58