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Context: container terminals
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Container terminal operations
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Tactical Berth Allocation with QCs Assignment

Giallombardo, Moccia, Salani and Vacca (2008)

Problem description

• Tactical Berth Allocation Problem (TBAP): assignment and scheduling of
ships to berths, according to time windows for both berths and ships; tactical
decision level, w.r.t. negotiation between terminal and shipping lines;

• Quay-Cranes Assignment Problem (QCAP): a quay crane (QC) profile
(number of cranes per shift, ex. 332) is assigned to each ship;

• Quadratic Yard Costs: take into account the exchange of containers between
ships, in the context of transshipment container terminals.

Issues

• the chosen profile determines the ship’s handling time and thus impacts on
the scheduling;

• feasible profiles can vary in length (number of shifts dedicated to the ship) and
in size (number of QCs dedicated to the ship in each active shift).
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Tactical Berth Allocation with QCs Assignment

Find

• a berth allocation

• a schedule

• a quay crane assignment

Given

• time windows on availability of berths

• time windows on arrival of ships

• handling times dependent on QC profiles

• values of QC profiles

Aiming to

• maximize total value of QC assignment

• minimize housekeeping costs of transshipment flows between ships
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TBAP with QCs assignment: the model

• N = set of vessels;

• M = set of berths;

• H = set of time steps (each time step h ∈ H is submultiple of the work shift
length);

• S = set of the time step indexes {1, ..., s̄} relative to a work shift; (s̄ represents the
number of time steps in a work shift);

• Hs = subset of H which contains all the time steps corresponding to the same
time step s ∈ S within a work shift;

• P s
i = set of feasible QC assignment profiles for the vessel i ∈ N when vessel

arrives at a time step with index s ∈ S within a work shift;

• Pi = set of quay crane assignment profiles for the vessel i ∈ N , where
Pi = ∪s∈SP s

i ;
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TBAP with QCs assignment: the model

• t
p
i = handling time of ship i ∈ N under the QC profile p ∈ Pi expressed as multiple

of the time step length;

• v
p
i = the value of serving the ship i ∈ N by the quay crane profile p ∈ Pi;

• q
pu
i = number of quay cranes assigned to the vessel i ∈ N under the profile p ∈ Pi

at the time step u ∈ (1, ..., t
p
i ), where u = 1 corresponds to the ship arrival time;

• Qh = maximum number of quay cranes available at the time step h ∈ H;

• fij = flow of containers exchanged between vessels i, j ∈ N ;

• dkw = unit housekeeping cost between yard slots corresponding to berths
k, w ∈ M ;

• [ai, bi] = [earliest, latest] feasible arrival time of ship i ∈ N ;

• [ak, bk] = [start, end] of availability time of berth k ∈ M ;

• [ah, bh] = [start, end] of the time step h ∈ H.
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TBAP with QCs assignment: the model

Consider a graph Gk = (V k, Ak) ∀k ∈ M , where V k = N ∪ {o(k), d(k)}, with o(k)

and d(k) additional vertices representing berth k, and Ak ⊆ V k × V k.

• xk
ij ∈ {0, 1} ∀k ∈ M, ∀(i, j) ∈ Ak, set to 1 if ship j is scheduled after ship i at

berth k;

• yk
i ∈ {0, 1} ∀k ∈ M, ∀i ∈ N , set to 1 if ship i is assigned to berth k;

• γh
i ∈ {0, 1} ∀h ∈ H,∀i ∈ N , set to 1 if ship i arrives at time step h;

• λ
p
i ∈ {0, 1} ∀p ∈ Pi,∀i ∈ N , set to 1 if ship i is served by the profile p;

• ρ
ph
i ∈ {0, 1} ∀p ∈ Pi,∀h ∈ H, ∀i ∈ N , set to 1 if ship i is served by profile p and

arrives at time step h;

• Tk
i ≥ 0 ∀k ∈ M, ∀i ∈ N , representing the berthing time of ship i at the berth k

i.e. the time when the ship moors;

• Tk
o(k)

≥ 0 ∀k ∈ M , representing the starting operation time of berth k i.e. the time

when the first ship moors at the berth;

• Tk
d(k)

≥ 0 ∀k ∈ M , representing the ending operation time of berth k i.e. the time

when the last ship departs from the berth.
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TBAP with QCs assignment: the MIQP model

Objective function

Maximize total value of QC profile assignments + Minimize the (quadratic)
housekeeping yard cost of transshipment flows between ships:

max
∑

i∈N

∑

p∈Pi

v
p
i λ

p
i −

1

2

∑

i∈N

∑

k∈M

yk
i

∑

j∈N

∑

w∈M

fijdkwyw
j (1)
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TBAP with QCs assignment: the MIQP model

Berth covering constraints

∑

k∈M

yk
i = 1 ∀i ∈ N, (2)

Flow and linking constraints

∑

j∈N∪{d(k)}

xk
o(k),j = 1 ∀k ∈ M, (3)

∑

i∈N∪{o(k)}

xk
i,d(k) = 1 ∀k ∈ M, (4)

∑

j∈N∪{d(k)}

xk
ij −

∑

j∈N∪{o(k)}

xk
ji = 0 ∀k ∈ M, ∀i ∈ N, (5)

∑

j∈N∪{d(k)}

xk
ij = yk

i ∀k ∈ M, ∀i ∈ N, (6)
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TBAP with QCs assignment: the MIQP model

Precedence constraints

Tk
i +

∑

p∈Pi

t
p
i λ

p
i − Tk

j ≤ (1 − xk
ij)M ∀k ∈ M, ∀i ∈ N, ∀j ∈ N ∪ d(k) (7)

Tk
o(k) − Tk

j ≤ (1 − xk
o(k),j)M ∀k ∈ M, ∀j ∈ N, (8)

Ship and Berth time windows

aiy
k
i ≤ Tk

i ∀k ∈ M, ∀i ∈ N, (9)

Tk
i ≤ biy

k
i ∀k ∈ M, ∀i ∈ N, (10)

ak ≤ Tk
o(k) ∀k ∈ M, (11)

Tk
d(k) ≤ bk ∀k ∈ M, (12)
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TBAP with QCs assignment: the MIQP model

Profile covering & linking constraints

∑

p∈Pi

λ
p
i = 1 ∀i ∈ N, (13)

∑

h∈Hs

γh
i =

∑

p∈P s
i

λ
p
i ∀i ∈ N, ∀s ∈ S, (14)

∑

k∈M

Tk
i − bh ≤ (1 − γh

i )M ∀h ∈ H, ∀i ∈ N, (15)

ah −
∑

k∈M

Tk
i ≤ (1 − γh

i )M ∀h ∈ H, ∀i ∈ N, (16)

ρ
ph
i ≥ λ

p
i + γh

i − 1 ∀h ∈ H, ∀i ∈ N, ∀p ∈ Pi, (17)

Quay crane and profile feasibility

∑

i∈N

∑

p∈Pi

h∑

u=max{h−t
p

i
+1;1}

ρ
pu
i q

p(h−u+1)
i ≤ Qh ∀h ∈ H s̄ (18)
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TBAP with QCs assignment: the MILP model

Additional decision variable

zkw
ij ∈ {0, 1} ∀i, j ∈ N, ∀k, w ∈ M , set to 1 if yk

i = yw
j = 1 and 0 otherwise.

Linearized objective function

max
∑

i∈N

∑

p∈Pi

v
p
i λ

p
i −

1

2

∑

i∈N

∑

j∈N

∑

k∈M

∑

w∈M

fijdkwzkw
ij (19)

Additional constraints

∑

k∈K

∑

w∈K

zkw
ij = gij ∀i, j ∈ N, (20)

zkw
ij ≤ yk

i ∀i, j ∈ N, ∀k, w ∈ M (21)

zkw
ij ≤ yw

j ∀i, j ∈ N, ∀k, w ∈ M (22)
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Generation of test instances

• Based on real data provided by MCT, Port of Gioia Tauro, Italy:

- container flows

- housekeeping yard costs

- vessel’s arrival times

• Crane productivity of 24 containers per hours

• Set of feasible profiles synthetically generated, according to ranges given by
practitioners:

Class min QC max QC min HT max HT volume (min,max)

Mother 3 5 3 6 (1296, 4320)

Feeder 1 3 2 4 (288, 1728)
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Generation of test instances

• 18 instances organized in 2 classes:

- “Easy”: 9 instances, 10 ships, 3 berths, 8 QCs

- “Difficult”: 9 instances, 20 ships, 5 berths, 13 QCs

• Different traffic volumes in scenarios A, B, C

• Each scenario is tested with a set of p̄ = 10, 20, 30 feasible profiles for each ship

MIQP and MILP formulations tested with CPLEX 10.2 on an Intel 3GHz workstation.
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CPLEX results

10 x 3 MILP FORMULATION MIQP FORMULATION

Set p̄ OBJ GAP CPU OBJ GAP CPU

(%) (sec) (%) (sec)

A 10 645995 0 99.07 643871 0.33 3600

A 20 646029 0 2.78 642263 0.59 3600

A 30 641402 0.72 3600 646029 0 1018.26

B 10 387855 0 6.71 387855 0 1008.69

B 20 387855 0 25.92 386252 0.42 3600

B 30 387855 0 1457.3 386252 0.42 3600

C 10 611219 0 16.34 608650 0.42 3600

C 20 611287 0 36.97 611287 0 1018.43

C 30 611287 0 2.08 611287 0 3384.06
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CPLEX results

20 x 5 MILP FORMULATION MIQP FORMULATION

Set p̄ OBJ GAP UB CPU OBJ GAP UB CPU

(%) (sec) (%) (sec)

A 10 - ∞ 1122068 7200 - ∞ 1409782 7200

A 20 - ∞ 1122807 7200 - ∞ 1444628 7200

A 30 - ∞ 1122807 7200 - ∞ 1498501 7200

B 10 - ∞ 843126 7200 - ∞ 1088668 7200

B 20 - ∞ 843160 7200 - ∞ 1117253 7200

B 30 - ∞ 843160 7200 - ∞ 1158170 7200

C 10 1269372 7.55 1365148 7200 - ∞ 1664112 7200

C 20 - ∞ 1365697 7200 - ∞ 1699890 7200

C 30 - ∞ 1365697 7200 - ∞ 1744295 7200

Gap ∞: no integer solution has been found by the solver; only UB has been provided.

Ilaria Vacca - TBAP Models and Heuristics – p.18/26



A New Heuristics for TBAP

Algorithm 1 : TBAP Bi-level Heuristics

Initialization : Assign a QC profile to each ship

repeat

1. solve BAP

2. update profiles

until stop criterion ;

TBAP Bi-level Heuristics:

1. BAP solution via Tabu Search

2. Profiles’ updating via Math Programming
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1. Tabu Search for BAP

Adapted from Cordeau, Laporte, Legato and Moccia (2005).

• New objective function: minimization of yard-related transshipment quadratic costs

• New constraints: QCs availability

• Each solution s ∈ S is represented by a set of m berth sequences such that every
ship belongs to exactly one sequence.

• Penalized cost function:

f(s) = c(s) + α1w1(s) + α2w2(s) + α3w3(s)

where w1(s) is the total violation of ships’ TWs, w2(s) is the total violation of
berths’ TWs and w3(s) is the total violation of QCs availability.

• “Move”: ship i is removed from sequence k and inserted in sequence k′ 6= k. The
new position in k′ is such that f(s) is minimized.

• Initial solution: randomly built assigning ships to berths and relaxing the QCs
availability constraint.
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2. Profiles’ Updating via Math Programming

Basic idea: use information of reduced costs to update the vector of assigned QC
profiles in a “smart” way.

• Let X̄ = [x̄, ȳ, T̄ ] be the BAP solution found by the Tabu Search for a given QC
profile assignment λ̄.

• We solve the linear relaxation of the TBAP MILP formulation, with the additional
constraints:

X̄ − ǫ ≤ X ≤ X̄ + ǫ (23)

λ̄ − ǫ ≤ λ ≤ λ̄ + ǫ (24)

• As suggested by Desrosiers and Lübbecke (2005), the shadow prices of these
constraints are the reduced costs of original variables X and λ.

• We identify the λ
p
i variable with the maximum reduced cost and we assign this

new profile p to ship i.

• If all reduced costs are ≤ 0, then we stop.
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Computational results

10 x 3 MILP FORMULATION HEURISTICS

Set p̄ OBJ GAP CPU OBJ GAP CPU

(%) (sec) (%) (sec)

A 10 645995 0 99.07 638428 1.17 22

A 20 646029 0 2.78 635693 1.60 53

A 30 641402 0.72 3600 631514 1.54 86

B 10 387855 0 6.71 383730 1.06 22

B 20 387855 0 25.92 382449 1.39 49

B 30 387855 0 1457.3 380200 1.97 80

C 10 611219 0 16.34 605628 0.91 23

C 20 611287 0 36.97 602171 1.49 51

C 30 611287 0 2.08 597833 2.20 85

Stop criterion for the Heuristics: maximum number of iterations (n × p̄).
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Computational results

20 x 5 MILP FORMULATION HEURISTICS

Set p̄ OBJ GAP UB CPU OBJ GAP CPU

(%) (sec) (%) (sec)

A 10 - ∞ 1122068 7200 1095720 2.35 166

A 20 - ∞ 1122807 7200 1089910 2.93 358

A 30 - ∞ 1122807 7200 1077340 4.05 527

B 10 - ∞ 843126 7200 821428 2.57 164

B 20 - ∞ 843160 7200 818634 2.91 348

B 30 - ∞ 843160 7200 812697 3.61 562

C 10 1269372 7.55 1365148 7200 1332990 2.36 160

C 20 - ∞ 1365697 7200 1328240 2.74 340

C 30 - ∞ 1365697 7200 1324930 2.99 539

Gap ∞: no integer solution has been found by the solver; only UB has been is provided.

Stop criterion for the Heuristics: maximum number of iterations (n × p̄).
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Computational results

10 x 3

• CPLEX solves at optimality and fast;

• Heuristics finds good solutions (gap 1-2%) pretty fast.

20 x 5

• CPLEX cannot provide any feasible integer solution;

• Heuristics finds good solutions (gap 2-4%) pretty fast.

Summing up:

• Heuristics provides satisfactory results in terms of:

- quality of the solution;
- speed.
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Conclusions and future work

Contribution

• Integration of two decision problems (BAP and QCAP)

• MIQP/MILP models

• Heuristics

Next steps

• Tests on bigger instances

• Improve quality of the solutions
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Thanks for your attention!
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