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Motivation

Worldwide 2004 2006 2008

1 Singapore 21’329 24’792 (+16%) 29’918 (+21%)

2 Shanghai 14’557 21’710 (+49%) 27’980 (+29%)

3 Hong Kong 21’984 23’539 (+07%) 24’248 (+03%)

Europe 2004 2006 2008

1 Rotterdam 8’291 9’655 (+17%) 10’784 (+12%)

2 Hamburg 7’003 8’862 (+27%) 9’737 (+10%)

3 Antwerp 6’064 7’019 (+16%) 8’663 (+23%)

Table 1: Container traffic (in thousands TEUs).
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Container terminals

Scheme of a container terminal system (Steenken et al., 2004).
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Berth Allocation & Quay Crane Assignment

Berth Allocation Problem (BAP)

to assign and to schedule ships to berths over a time horizon, according to an

expected handling time, time windows on the arrival time of ships and availability

of berths.

Quay-Crane Assignment Problem (QCAP)

to assign quay cranes (QC) to ships scheduled by the given berth allocation plan,

over a time horizon, taking into account the QC capacity constraint in terms of

available quay cranes at the terminal.
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Tactical Berth Allocation Problem (TBAP)

Integrated planning of BAP and QCAP

• tactical decision level : we analyze the problem from the terminal point of view,
in order to provide decision support in the context of the negotiation between
the terminal and shipping lines.

• quay-crane profiles and handling time: the handling time becomes a decision
variable, dependent on the assigned quay crane profile (i.e. number of cranes
per shift, ex. 332). Feasible profiles can vary in length (number of shifts
dedicated to the ship) and in size (number of QCs dedicated to the ship in
each active shift).

Container terminal management – p. 7



The concept of QC assignment profile
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Transshipment-related housekeeping yard costs

DC

   
   
   
   

  
  
!!
!!

   
   
!!!
!!!

  
  
  

!!
!!
!!

  
  
  

!!
!!
!!

BA

   
   
   

!!!
!!!
!!!

• Vessels A-B: no housekeeping, straddle carriers

• Vessels C-D: housekeeping, straddle carriers

• Vessels A-D: housekeeping, multi-trailers
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Problem definition

Find

• a berth allocation;

• a schedule;

• a quay crane assignment;

Given

• time windows on availability of berths;

• time windows on arrival of ships;

• handling times dependent on QC profiles;

• values of QC profiles;

Objective

• maximize total value of QC assignment;

• minimize housekeeping costs of transshipment flows between ships.
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Notation & data

N set of vessels ;

M set of berths ;

H set of time steps ;

Pi set of quay crane profiles for the vessel i ∈ N ;

t
p
i handling time of ship i ∈ N using QC profile p ∈ Pi;

v
p
i monetary value associated to qc profile p ∈ Pi, i ∈ N ;

q
pu
i number of quay cranes used by profile p ∈ Pi, i ∈ N at time position u;

Qh maximum number of quay cranes available at the time step h ∈ H;

fij flow of containers exchanged between vessels i, j ∈ N ;

gij binary parameter equal to 1 if fij > 0 and 0 otherwise;

dkw unit housekeeping cost between yard slots corresponding to berths k,w ∈ M .
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The Tactical Berth Allocation Problem (TBAP)

Decision variables

• berth assignment : yki ∈ {0, 1};

• profiles’ assignment : λp
i ∈ {0, 1};

• ship scheduling : xk
ij ∈ {0, 1} , Tk

i ≥ 0.

Objective function maximize ( qc profile value - housekeeping cost )

max
∑

i∈N

∑

p∈Pi

v
p
i λ

p
i −

1

2

∑

i∈N

∑

k∈M

yki

∑

j∈N

∑

w∈M

fijdkwywj

MIQP/MILP constraints

• ship covering constraints;

• arc-flow / precedence constraints;

• time windows;

• profile assignment;

• QC capacity constraint.
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max
∑
i∈N

∑
p∈Pi

vpi λ
p
i −

1

2

∑
i∈N

∑
k∈M

yki
∑
j∈N

∑
w∈M

fijdkwy
w
j (1)

s.t.
∑
k∈M

yki = 1 ∀i ∈ N, (2)∑
j∈N∪{d(k)}

xko(k),j = 1 ∀k ∈M, (3)

∑
i∈N∪{o(k)}

xki,d(k) = 1 ∀k ∈M, (4)

∑
j∈N∪{d(k)}

xkij −
∑

j∈N∪{o(k)}

xkji = 0 ∀k ∈M, ∀i ∈ N, (5)

∑
j∈N∪{d(k)}

xkij = yki ∀k ∈M, ∀i ∈ N, (6)

T k
i +

∑
p∈Pi

tpiλ
p
i − T

k
j ≤ (1− xkij)M ∀k ∈M, ∀i ∈ N, ∀j ∈ N ∪ {d(k)},(7)

T k
o(k) − T

k
j ≤ (1− xko(k),j)M ∀k ∈M, ∀j ∈ N, (8)

aiy
k
i ≤ T k

i ∀k ∈M, ∀i ∈ N, (9)

T k
i ≤ biyki ∀k ∈M, ∀i ∈ N, (10)

ak ≤ T k
o(k) ∀k ∈M, (11)

T k
d(k) ≤ b

k ∀k ∈M, (12)∑
p∈Pi

λpi = 1 ∀i ∈ N, (13)

∑
h∈Hs

γhi =
∑
p∈P s

i

λpi ∀i ∈ N, ∀s ∈ S, (14)

∑
k∈M

T k
i − bh ≤ (1− γhi )M ∀h ∈ H, ∀i ∈ N, (15)

ah −
∑
k∈M

T k
i ≤ (1− γhi )M ∀h ∈ H, ∀i ∈ N, (16)

ρphi ≥ λ
p
i + γhi − 1 ∀h ∈ H, ∀i ∈ N, ∀p ∈ Pi, (17)∑

i∈N

∑
p∈Pi

h∑
u=max{h−tpi +1;1}

ρpui q
p(h−u+1)
i ≤ Qh ∀h ∈ H s̄, (18)

xkij ∈ {0, 1} ∀k ∈M, ∀(i, j) ∈ Ak, (19)

yki ∈ {0, 1} ∀k ∈M, ∀i ∈ N, (20)

γhi ∈ {0, 1} ∀h ∈ H,∀i ∈ N, (21)

λpi ∈ {0, 1} ∀p ∈ Pi, ∀i ∈ N, (22)

ρphi ∈ {0, 1} ∀p ∈ Pi, ∀h ∈ H,∀i ∈ N, (23)

T k
i ≥ 0 ∀k ∈M, ∀i ∈ N ∪ {o(k), d(k)}. (24)



MIP formulation and heuristic algorithm

• MIQP and MILP formulations solved by CPLEX.

• Heuristic algorithm based on tabu search and mathematical programming.

• Real data provided by the port of Gioia Tauro, Italy.

• CPLEX fails, the problem is too complex.

• The heuristic is very fast and provides good solutions.

More details in (Giallombardo et al., 2010).
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Column generation for TBAP

• We propose a Dantzig-Wolfe (DW) reformulation of the MILP by Giallombardo
et al. (2010) and we solve it using column generation.

• A column represents the sequence of ships calling at a given berth.

• A quay crane profile is assigned to every ship in the sequence.

• The master problem selects sequences in order to provide a min-cost solution.

• Profitable columns are generated by the pricing subproblem.
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Master problem

Additional notation

Ωk set of all feasible sequences for berth k ∈ M ;

αi
r coefficient equal to 1 if ship i is operated in sequence r, 0 otherwise;

β
ip
r coefficient equal to 1 if ship i is operated in sequence r with profile p, 0 otherwise;

qhr number of quay cranes used by sequence r at time step h;

vr total value of sequence r ∈ Ωk defined as vr =
∑

i∈N

∑
p∈Pi

β
ip
r v

p
i .

Decision variables

sr equal to 1 if sequence r ∈ Ωk is chosen, 0 otherwise;

zkwij equal to 1 if ship i ∈ N is assigned to berth k ∈ M and ship j ∈ N to berth w ∈ M ,

0 otherwise.
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Master problem

Objective function

min
∑

i∈N

∑

j∈N

∑

k∈M

∑

w∈M

fijdkwzkwij −
∑

k∈M

∑

r∈Ωk

vrsr (1)

Ship covering & berth assignment

∑

k∈M

∑

r∈Ωk

αi
rsr = 1 ∀i ∈ N, (2)

∑

r∈Ωk

sr ≤ 1 ∀k ∈ M, (3)

Quay-cranes capacity

∑

k∈M

∑

r∈Ωk

qhr sr ≤ Qh ∀h ∈ H, (4)
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Master problem

Linearization constraints

∑

k∈M

∑

w∈M

zkwij = gij ∀i ∈ N, j ∈ N, (5)

∑

r∈Ωk

airsr − zkwij ≥ 0 ∀i ∈ N, j ∈ N, k ∈ M,w ∈ M, (6)

∑

r∈Ωw

ajrsr − zkwij ≥ 0 ∀i ∈ N, j ∈ N, k ∈ M,w ∈ M, (7)

Variables’ domain

zkwij ≥ 0 ∀i ∈ N, j ∈ N, k ∈ M,w ∈ M, (8)

sr ≥ 0 ∀r ∈ Ωk, k ∈ M. (9)
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Pricing subproblem

Let [π, µ, π0, θ, η] be the dual vector associated to constraints (2), (3), (4), (6) and (7).

Reduced cost of sequence rk ∈ Ωk

c̃rk = −vrk − πk
0 −

∑

i∈N

πiαi
r −

∑

h∈H

µhqhr −
∑

i,j∈N

∑

w∈M

θkwij air −
∑

i,j∈N

∑

w∈M

ηkwij ajr

Multiple pricing

• at each iteration, we have |M | subproblems, one for every berth;

• the subproblem identifies the column r∗
k

with the minimum reduced cost.

Column generation

• if c̃r∗
k
< 0 for some k, we add column r∗

k
and we iterate;

• otherwise the current master problem solution is proven to be optimal.
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Pricing subproblem

• The pricing subproblem is an Elementary Shortest Path Problem with Resource
Constraints (ESPP-RC).

• Generated sequences satisfy:

- flow and precedence constraints (scheduling);

- time windows constraints;

- profile assignment constraints.

• The pricing problem is solved via dynamic programming.
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Computational results

10 x 3 B&P CPLEX (1h) HEUR

Instance opt sol t(s) best sol GAP best sol GAP t(s)

H1p10 790735 21 x ∞ 786439 0.54% 7

H1p20 791011 25 x ∞ 785460 0.70% 21

H1p30 791045 10 780722 1.30% 784658 0.81% 39

H2p10 733276 2 712669 2.81% 732101 0.16% 8

H2p20 735646 7 x ∞ 729472 0.84% 20

H2p30 735682 9 723818 1.61% 727443 1.12% 33

L1p10 515902 7 515902 0.00% 513941 0.38% 7

L1p20 518049 5 515991 0.40% 513847 0.81% 18

L1p30 518084 27 513731 0.84% 509617 1.63% 37

L2p10 564831 9 564831 0.00% 560915 0.69% 8

L2p20 564867 7 561504 0.60% 559595 0.93% 18

L2p30 564903 8 559389 0.98% 556998 1.40% 36
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Computational results

15 x 3 B&P (3h) CPLEX (3h) HEUR

Instance opt sol t(s) best sol GAP best sol GAP t(s)

H1p10 1170783 3507 x ∞ 1163063 2.26% 34

H2p10 1272247 3787 1250124 3.27% 1265782 2.06% 32

L1p10 1098411 1203 x ∞ x ∞ 27

L2p10 890211 8975 x ∞ 888112 1.31% 28

20 x 5 B&P (3h) CPLEX (3h) HEUR

Instance best sol GAP best sol GAP best sol GAP t(s)

H1p104d 1293184 4.66% x ∞ 1305216 3.78% 65

H2p104d 1379208 4.49% x ∞ x ∞ 63

L1p104d 1224458 3.95% x ∞ 1230409 3.48% 66

L2p104d 1045778 3.61% x ∞ 1050171 3.20% 70
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Pricing subproblem

Issues

• the underlying network has one node for every ship i ∈ N , for every quay crane
profile p ∈ Pi and for every time step h ∈ H;

• with a "standard" implementation, only small-size instances are solved in a
reasonable time.

Accelerating strategies

• bi-directional dynamic programming;

• heuristic pricing, dual stabilization, primal heuristic;

• for every ship i, definition of the list of non-dominated (h, p) pairs;

• two-stage column generation.
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Two-stage column generation

Context

• Dantzig-Wolfe reformulation of large-scale combinatorial problems;

• standard column generation techniques not efficient / successful;

• focus on problems where the large number of variables in the compact
formulation directly affects the pricing problem;

• CG current issues: increasing size of problems and instability.

Objective

• to reduce the size of the problem to be solved while keeping optimality;

Main ingredients of the framework

• exploit the relationship between compact and extensive formulation;

• simultaneously generate “compact” and “extensive” columns.
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Two-stage column generation

• we start with a subset of compact formulation variables (partial compact
formulation);

• the problem is reformulated via Dantzig-Wolfe and solved via standard column
generation (optimal partial master problem);

• at this point, profitable compact formulation variables are dynamically generated
and added to the formulation (optimal master problem).

follows:

Algorithm 1: Two-stage column generation

input set X̄

repeat

repeat
CG1: generate extensive variables λ for partial master

problem (PMP)

until optimal partial master problem (PMP) ;

CG2: generate compact variables x for partial compact

formulation (PCF)

until optimal master problem (MP) ;
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Two-stage column generation

Contribution of compact formulation variables

• we introduce the concept of extensive reduced cost that measures the
contribution of compact formulation variables to the extensive formulation
(master problem);

• we aim to add compact formulation variables that are profitable for the master
problem, regardless of the optimal solution of the linear relaxation of the
compact formulation;

Pricing problem with the integrality property

• extensive reduced cost can be computed using Walker’s method (1969), that
makes use of the optimal (linear) master and pricing solutions.

Pricing problem without the integrality property

• extensive reduced cost can be computed adapting Irnich’s method (2010),
that makes use of path reduced costs and dynamic programming.
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Two-stage column generation for TBAP

• We refer to the MILP by Giallombardo et al. (2010) as compact formulation.

• The decision variables of the TBAP compact formulation are:

yki ∈ {0, 1} berth assignment;

λ
p
i ∈ {0, 1} qc profile assignment;

xk
ij ∈ {0, 1} , Tk

i ≥ 0 ship scheduling.

• We focus on variables λ
p
i since the number of profiles has impact on the size of

the network in the pricing problem.

Basic idea

• start solving the problem only with a meaningful subset of qc profiles P̂ ⊂ P ;

• dynamically add the profitable profiles p ∈ P \ P̂ that are missing.
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Two-stage column generation

Implementation and testing

• extensive reduced cost computation based on exact CG2 dynamic
programming;

• we further propose a relaxed version of CG2 DP, in order to gain
computational efficiency;

• different initialization strategies for the subset of compact formulation
variables (opt_basis vs opt_lp);

• strategies for adding compact formulation columns; trade-off between:
- limiting the number of CG2 iterations;
- adding a few profitable columns per iteration;

• elimination of suboptimal variables;

• comparison with standard column generation in terms of number of generated
columns and computational time.
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Computational results

Rich VRP with |N | = 50 and compact-formulation variable similar to the TBAP profiles.

Results for the root node.

Stand.CG Two-stage column generation

opt master opt lp

Class nr sol cols t sol cols t sol cols t

R 50 A 50 12 12 1789 37 12 721 12 12 1970 89

R 50 B 50 12 12 3435 647 12 1247 269 12 3099 1582

R 50 C 50 12 12 4801 1937 12 1738 2254 10 3917 6988

C 50 A 50 9 8 2910 501 8 1082 18 8 3991 102

C 50 B 50 9 8 5352 6200 8 1872 1614 6 5423 4467

C 50 C 50 9 5 6638 2335 5 2272 7450 1 7063 2479

Container terminal management – p. 28



Summing up

• The proposed methodology is applicable to column generation itself (and not
necessarily to a branch-and-price algorithm).

• The size of the pricing underlying network is increased at every iteration, but
(almost) never reaches the full size.

• It is worth for very complex problems where already the root node is difficult to
solve.
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Conclusion

Application

• Integrated planning of berth allocation and quay crane assignment

• Heuristic and exact solution algorithms for the specific problem

Methods

• Implementation of advanced column generation and branch-and-price codes

• Methodological contribution: two-stage column generation
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Thanks for your attention!
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