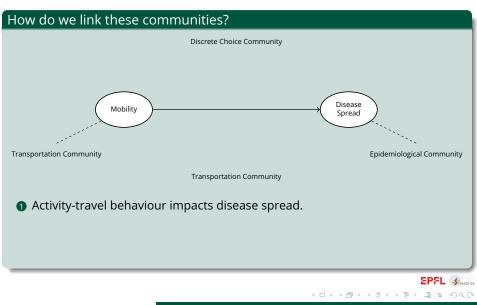
| Introduction<br>OO | Data<br>O | Methodology<br>0000                      | Results<br>0000000 | Conclusion<br>OO | References |
|--------------------|-----------|------------------------------------------|--------------------|------------------|------------|
|                    |           |                                          |                    |                  |            |
|                    |           |                                          |                    |                  |            |
|                    |           |                                          |                    |                  |            |
|                    | <u> </u>  | niological Moo<br>eption: A Sim<br>Manag |                    |                  |            |

STRC 2024


Transport and Mobility Laboratory

Cloe Cortes Balcells, Fabian Torres, Rico Krueger and Michel Bierlaire cloe.cortesbalcells@epfl.ch

Transport and Mobility Laboratory

EPFL STRANSPLOR

| Introduction<br>●O | Methodology<br>0000 | Results<br>0000000 | Conclusion<br>OO |  |
|--------------------|---------------------|--------------------|------------------|--|
|                    |                     |                    |                  |  |



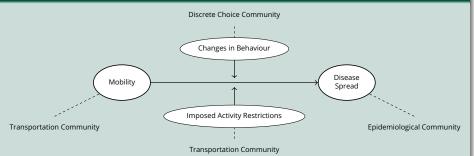
| Introduction<br>●O | Methodology<br>0000 | Results<br>0000000 | Conclusion<br>OO |  |
|--------------------|---------------------|--------------------|------------------|--|
|                    |                     |                    |                  |  |





Activity-travel behaviour impacts disease spread.

2 Imposed activity restrictions change how people schedule their day.


EPFL

-

STRANSP.OR

| Introduction<br>●O | Methodology<br>0000 | Results<br>0000000 | Conclusion<br>OO |  |
|--------------------|---------------------|--------------------|------------------|--|
|                    |                     |                    |                  |  |

#### How do we link these communities?



- Activity-travel behaviour impacts disease spread.
- 2 Imposed activity restrictions change how people schedule their day.
- Risk perception in performing activities changes how people schedule their day.

SPSI.

STRANSP.OR

| Introduction | Methodology<br>0000 | Results<br>0000000 | Conclusion<br>OO |  |
|--------------|---------------------|--------------------|------------------|--|
|              |                     |                    |                  |  |

## **Research Gaps**

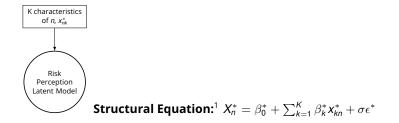
- Existing models fail to account for how individuals **adjust their behaviors** in response to health **risk perception and restrictions** (Hancean, Slavinec, and Perc 2021, Mazzoli et al. 2020, and Palguta, Levinsky, and Skoda 2022).
- Overlooking the potential for activity swapping alters the dynamics of public space usage and disease transmission.
- The **computational complexity** of solving these models increases dramatically with the number of facilities and individuals involved (Pougala, Hillel, and Bierlaire 2022).

Results 0000000

## Description of the Data

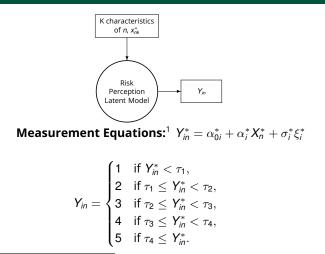
#### COVID Future Wave 1 Survey Data (see Salon et al. 2021)

- Attitudinal variables of the individuals Y<sub>in</sub> reflecting individuals' risk perceptions and concerns regarding the pandemic.
- Demographic information k of the individual n is represented as  $x_{kn}$ . With k = age, gender, education level, region, race.


#### A synthetic population provided by He et al. 2020:

- Information on individuals' age, gender, employment status, and education level.
- Information on geographic network that assigns coordinates to nodes, each tagged with specific activity types such as leisure, education, shop, work, and home.

EPEL


STRANSP.OR

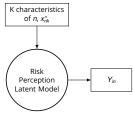
| Introduction<br>OO | Methodology<br>●○○○ | Results<br>0000000 | Conclusion<br>OO |  |
|--------------------|---------------------|--------------------|------------------|--|
|                    |                     |                    |                  |  |



 $<sup>{}^{1}\</sup>beta_{0}^{*}$  is the intercept,  $\beta_{k}^{*}$  are the coefficients for the *K* explanatory variables  $x_{kn}^{*}$  for each individual *n*,  $\sigma$  is the standard deviation **EPFL** subscription of the error term,  $*^{*}$  represents the error term associated with the latent variable.

| Introduction<br>OO | Methodology<br>●○○○ | Results<br>0000000 | Conclusion<br>OO | References |
|--------------------|---------------------|--------------------|------------------|------------|
|                    |                     |                    |                  |            |




 $\alpha_{0j}^*$  is the intercept for the *i*-th indicator,  $\alpha_i^*$  is the coefficient relating the latent variable to the *i*-th indicator,  $\sigma_i^*$  is the standard deviation of the error term for the *i*-th indicator,  $\varepsilon_i^*$  is the thresholds that define the categories of the Likert scale.

Transport and Mobility Laboratory

EPFL

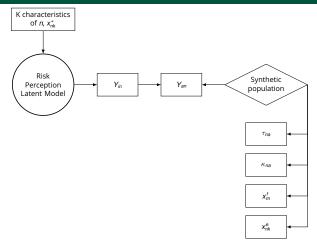
三日 りゅつ

| Introduction<br>OO | Methodology<br>●000 | Results<br>0000000 | Conclusion<br>OO |  |
|--------------------|---------------------|--------------------|------------------|--|
|                    |                     |                    |                  |  |



Contribution to the likelihood for the ordered probit model: <sup>1</sup>

$$\Pr(Y_{jn} = j_i) = \Pr(\tau_{j-1} \le Y_n^* \le \tau_j) = \Pr\left(\frac{\tau_{j-1} - \alpha_{0i}^* - \alpha_i^* X_n^*}{\sigma_i^*} < \xi_i \le \frac{\tau_j - \alpha_{0i}^* - \alpha_i^* X_n^*}{\sigma_i^*}\right) \\ = \Phi\left(\frac{\tau_j - \alpha_{0i}^* - \alpha_i^* X_n^*}{\sigma_i^*}\right) - \Phi\left(\frac{\tau_{j-1} - \alpha_{0i}^* - \alpha_i^* X_n^*}{\sigma_i^*}\right).$$


<sup>1</sup>We define two positive parameters  $\delta_1^*$  and  $\delta_2^*$  as:

$$\tau_1 = -\delta_1^* - \delta_2^*, \tau_2 = -\delta_1^*, \tau_3 = \delta_1^*, \tau_4 = \delta_1^* + \delta_2^*.$$

Transport and Mobility Laboratory

ELE NOR

| Introduction<br>OO | Methodology<br>●○○○ | Results<br>0000000 | Conclusion<br>OO |  |
|--------------------|---------------------|--------------------|------------------|--|
|                    |                     |                    |                  |  |

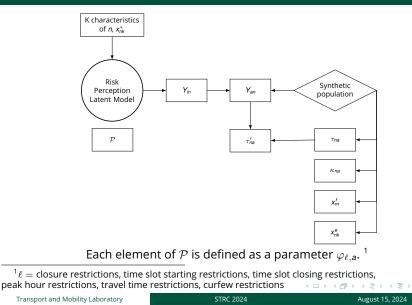


#### We use only the indicators related to the risk perception on activities:

|                                   | <i>i</i> = a | EP:             | FL STRANSP.OR |
|-----------------------------------|--------------|-----------------|---------------|
|                                   |              | 《曰》《聞》《臣》《臣》 [] | = 900         |
| Transport and Mobility Laboratory | STRC 2024    | August 15, 2024 | 5/20          |

| Introduction<br>OO | Methodology<br>●○○○ | Results<br>0000000 | Conclusion<br>OO |  |
|--------------------|---------------------|--------------------|------------------|--|
|                    |                     |                    |                  |  |

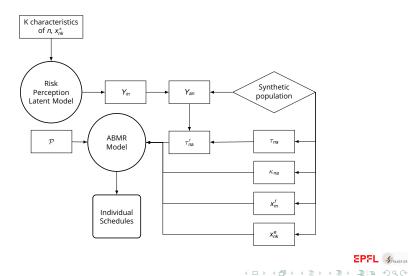



Transport and Mobility Laboratory

STRC 2024

August 15, 2024

5/20


| Introduction<br>OO | Methodology<br>●000 | Results<br>0000000 | Conclusion<br>OO |  |
|--------------------|---------------------|--------------------|------------------|--|
|                    |                     |                    |                  |  |



EPFL

315

| Introduction<br>OO | Methodology<br>●○○○ | Results<br>0000000 | Conclusion<br>OO |  |
|--------------------|---------------------|--------------------|------------------|--|
|                    |                     |                    |                  |  |



Transport and Mobility Laboratory

Stransp.or

**EPFL** 

# Methodology: Previous Framework Pougala, Hillel, and Bierlaire 2022

٨

| Subject to: |                                                                                 |                                          |     |
|-------------|---------------------------------------------------------------------------------|------------------------------------------|-----|
|             | $\sum_{a} \sum_{b} (Z_{a}^{0} \cdot x_{a}^{2} + Z_{ab} \cdot \omega_{ab}) = 24$ |                                          | (2) |
|             | $\omega_{\mathrm{dawn}} = \omega_{\mathrm{dusk}} = 1$                           |                                          | (3) |
|             | $x_a^2 \ge Z_a^0 \cdot \tau_a^{\min}$                                           | $\forall a \in \mathcal{A}$              | (4) |
|             | $x_a^2 \leq Z_a^0 \cdot T$                                                      | $\forall a \in \mathcal{A}$              | (5) |
|             | $Z_{ab} + Z_{ba} \leq 1$                                                        | $\forall a, b \in \mathcal{A}, a \neq b$ | (6) |
|             | $Z_{a,\text{dawn}} = Z_{\text{dusk},a} = 0$                                     | $\forall a \in \mathcal{A}$              | (7) |

A A

# EPFL STRANSPOR

Objective function

э

Image: A matching of the second se

| Introduction<br>OO | Methodology<br>○○●○ | Results<br>0000000 | Conclusion<br>OO |  |
|--------------------|---------------------|--------------------|------------------|--|
|                    |                     |                    |                  |  |

| $\sum_{a} Z_{ab} = Z_b^0$                                                   | $\forall b \in \mathcal{A}, b  eq dawn$   | (8)  |
|-----------------------------------------------------------------------------|-------------------------------------------|------|
| $\sum_{b} Z_{ab} = Z_a^0$                                                   | $\forall a \in \mathcal{A}, a \neq dusk$  | (9)  |
| $(Z_{ab} - 1) \cdot T \le x_a^1 + x_a^2 + Z_{ab} \cdot \omega_{ab} - x_b^1$ | $\forall a, b \in \mathcal{A}, a \neq b,$ | (10) |
| $(1-Z_{ab})\cdot T \ge x_a^1 + x_a^2 + Z_{ab}\cdot \omega_{ab} - x_b^1$     | $\forall a, b \in \mathcal{A}, a \neq b$  | (11) |
| $x_a^1 \ge \chi_a^-$                                                        | $\forall a \in \mathcal{A}$               | (12) |
| $x_a^1 + x_a^2 \le \chi_a^+$                                                | $\forall a \in \mathcal{A}$               | (13) |
| $\sum_{a \in \mathcal{F}_a} Z_a^0 \le 1$                                    | $\forall a \in \mathcal{A}$               | (14) |
|                                                                             |                                           |      |

<ロ>
<日>
<日>
<日>
<日>
<日>
<10</p>
<10</p

|  | Introduction<br>00 |  | Methodology<br>○○○● | Results<br>0000000 | Conclusion<br>OO |  |
|--|--------------------|--|---------------------|--------------------|------------------|--|
|--|--------------------|--|---------------------|--------------------|------------------|--|

## Methodology: ABRM Constraints

#### Activity-restriction constraints

$$\begin{split} \varphi_{1,a} Z_a^0 &= 0 & \forall \varphi_{1,a} \in \mathcal{P}, a \in \mathcal{A} \quad (15) \\ \varphi_{2,a} X_a^1 &\geq \varphi_{2,a} t_a^{\Theta^1} & \forall \varphi_{2,a} \in \mathcal{P}, a \in \mathcal{A} \quad (16) \\ \varphi_{3,a} (X_a^1 + X_a^2) &\geq \varphi_{3,a} t_a^{\Theta^2} & \forall \varphi_{3,a} \in \mathcal{P}, a \in \mathcal{A} \quad (17) \\ \varphi_{4,a} (X_a^1 + X_a^2) &\leq \varphi_{4,a} (t_a^{\Theta^3} + 24 * (1 - Z_2)) & \forall \varphi_{4,a} \in \mathcal{P}, a \in \mathcal{A} \quad (18) \\ \varphi_{4,a} X_a^1 &\geq \varphi_{4,a} (t_a^{\Theta^4} - 24 * (1 - Z_1)) & \forall \varphi_{4,a} \in \mathcal{P}, a \in \mathcal{A} \quad (19) \\ \varphi_{4,a} (Z_1 + Z_2 - 1) &\geq 0 & \forall a \in \mathcal{A} \quad (20) \\ \varphi_{5,a} (Z_{ab} \cdot \omega_{ab}) &\leq \varphi_{5,a} t_a^{\Theta^5} & \forall \varphi_{5,a} \in \mathcal{P}, a \in \mathcal{A} \quad (21) \\ \varphi_{6,a} \tau_{dawn} &\leq \varphi_{6,a} t_a^{\Theta^6} & \forall a \in \mathcal{A} \quad (22) \\ \varphi_{6,a} X_{dusk} &\geq \varphi_{6,a} t_a^{\Theta^7} & \forall a \in \mathcal{A} \quad (23) \end{split}$$

 $\ell$  = closure restrictions, time slot starting restrictions, time slot closing restrictions, peak hour restrictions, travel time restrictions, curfew restrictions

Transport and Mobility Laboratory

\$

|  | Introduction<br>OO |  | Methodology<br>0000 | Results<br>●000000 | Conclusion<br>OO |  |
|--|--------------------|--|---------------------|--------------------|------------------|--|
|--|--------------------|--|---------------------|--------------------|------------------|--|

#### Results: Case Study - Population of NYC

#### **Study Focus**

Our study examines the population of **New York City** (He et al. 2020). Our sample considers a population of **10'000 individuals and 5'489 facilities**).

#### We prepare the inputs of the model:

| Attributes        |                  |  |  |  |  |
|-------------------|------------------|--|--|--|--|
| Individual        | Facility         |  |  |  |  |
| ld Individual     | ld Facility      |  |  |  |  |
| Age               | X Coordinate     |  |  |  |  |
| Gender            | Y Coordinate     |  |  |  |  |
| Employment Status | Type of Facility |  |  |  |  |
| Education Level   |                  |  |  |  |  |
| Coordinate X Home |                  |  |  |  |  |
| Coordinate Y Home |                  |  |  |  |  |

Table: Summary of Individual and Facility Attributes

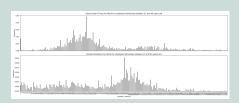



Figure: Distribution of desired start time (above) and desired duration (below) of Work activities for employed individuals between 21 and 40 years old.

Transport and Mobility Laboratory

| Introduction<br>OO | Methodology<br>0000 | Results<br>0●00000 | Conclusion<br>OO |  |
|--------------------|---------------------|--------------------|------------------|--|
|                    |                     |                    |                  |  |

#### Results: Case Study - Population of NYC

| Tested Scenarios       | Closure   |           |      | Constraints |
|------------------------|-----------|-----------|------|-------------|
|                        | Secondary | Education | Work | Curfew      |
| No restrictions        |           |           |      |             |
| Outing limitations     | х         |           |      |             |
| Early curfew           |           |           |      | 5pm         |
| Economy preservation   | х         | х         |      | ·           |
| Work-education balance |           | х         | х    |             |

Tested scenarios, each one considering different NPIs as input to the ABM

**SPEI** 

STPANSE OF

| Introduction<br>OO | Methodology<br>0000 | Results<br>00●0000 | Conclusion<br>OO |  |
|--------------------|---------------------|--------------------|------------------|--|
|                    |                     |                    |                  |  |

## **Execution Time: Solver**

#### We solve the problem using dynamic programming.

|                            | Execution time [h:mm:ss] | Individuals/second | Seconds/individual |
|----------------------------|--------------------------|--------------------|--------------------|
| No restrictions            | 0:54:36                  | 3.05               | 0.32765            |
| Outing limitations         | 0:12:52                  | 12.94              | 0.07725            |
| Early curfew               | 0:52:42                  | 3.16               | 0.31624            |
| Economy preservation       | 0:01:33                  | 107.22             | 0.00933            |
| Work-education balance     | 0:37:53                  | 4.40               | 0.22729            |
| Leisure facilities closure | 0:20:40                  | 8.07               | 0.12396            |

Table: Execution details for each tested scenario.

EPFL

1.2

STPANSO OF

| Introduction<br>OO | Methodology<br>0000 | Results<br>0000000 | Conclusion<br>OO |  |
|--------------------|---------------------|--------------------|------------------|--|
|                    |                     |                    |                  |  |

#### Results across scenarios



Figure: Outings Limitation scenario.

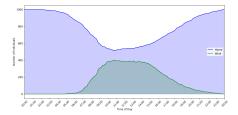
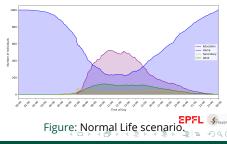
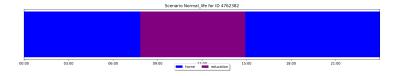





Figure: Early Curfew scenario.

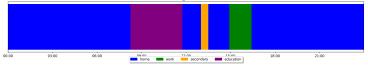


#### Figure: Only Economy scenario.




Transport and Mobility Laboratory

STRC 2024


August 15, 2024 12 /

| Introduction<br>OO | Methodology<br>0000 | Results<br>0000●00 | Conclusion<br>OO |  |
|--------------------|---------------------|--------------------|------------------|--|
|                    |                     |                    |                  |  |

## Results across individuals: insights on behavior



Scenario Normal life for ID 7792690



#### Transport and Mobility Laboratory

STRANSP.OR

| Introduction<br>OO | Methodology<br>0000 | Results<br>00000●0 | Conclusion<br>OO |  |
|--------------------|---------------------|--------------------|------------------|--|
|                    |                     |                    |                  |  |

### Aggregated results: insights on activity durations

Transport and Mobility Laboratory

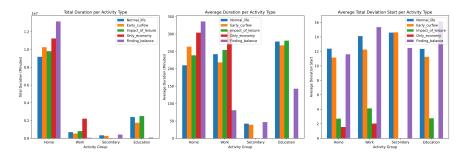



Figure: Total Duration, Average Duration and Average Total Deviation Start per Activity Type .

STRC 2024

э

• • • • • • • • • • • •

EPFL

12

STRANSP.OR

| Introduction<br>OO | Methodology<br>0000 | Results<br>000000 | Conclusion<br>OO |  |
|--------------------|---------------------|-------------------|------------------|--|
|                    |                     |                   |                  |  |

## Results after applying the Risk Perception Latent state

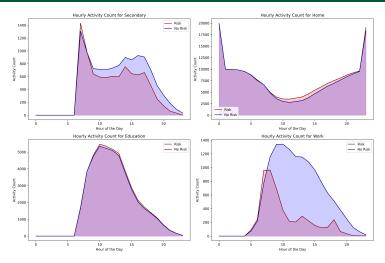



 Figure: Changes in Hourly Count of Individuals per activity when including the Risk Perception

 Latent Model.

 (a) < (b) <

Transport and Mobility Laboratory

## **Conclusion and Future Work**

#### **Conclusions:**

- Computationally efficient tool to model individual schedules for epidemiological models, capable of running 10,000 individuals with 5,000 facilities in 50 minutes.
- Able to capture the 'swapping-activities' effect.
- Able to model government-imposed mobility restrictions and self-imposed changes due to perceived risks.

#### Future work:

- Expand the sample to 300,000 individuals and calibrate the latent model with more socioeconomic variables.
- Embed the activity-based model into an epidemiological model to optimize policies using Cortes Balcells, Krueger, and Bierlaire 2021.
- 3 Validate the model with real data.

・ロト ・ 同 ト ・ ヨ ト ・ 三 ト ・ クタマ

EPFL Stranson

16/20

|  |  | Conclusion |  |
|--|--|------------|--|
|  |  | 00         |  |
|  |  |            |  |

# Thank you for your attention



Transport and Mobility Laboratory

| Introduction<br>OO |           | Methodology<br>0000                     | Results<br>0000000 | Conclusion<br>OO | References |
|--------------------|-----------|-----------------------------------------|--------------------|------------------|------------|
|                    |           |                                         |                    |                  |            |
| References         | 51        |                                         |                    |                  |            |
| "Activity-b        | ased mode | e, Rico Krueger, a<br>ling and simulati |                    |                  |            |

http://www.strc.ch/2021.php.

Hancean, Marian-Gabriel, Mitja Slavinec, and Matjaz Perc (Mar. 2021). "The impact of human mobility networks on the global spread of COVID-19". en. In: *Journal of Complex Networks* 8.6. Ed. by Ernesto Estrada, cnaa041. ISSN: 2051-1310, 2051-1329. DOI: 10.1093/comnet/cnaa041. URL: https://academic.oup.com/comnet/article/doi/10.1093/comnet/cnaa041/6161495 (visited on 06/12/2023).

He, Brian Y. et al. (Nov. 2020). "Evaluation of city-scale built environment policies in New York City with an emerging-mobility-accessible synthetic population". en. In: *Transportation Research Part A: Policy and Practice* 141, pp. 444–467. ISSN: 09658564. DOI: 10.1016/j.tra.2020.10.006. URL: https:

//linkinghub.elsevier.com/retrieve/pii/S096585642030745X
(visited on 04/26/2024).
EPEL filesenteries

| 00 0                                                                                                                                                                                                                           | 0000 00000                                                                                                                                                                      |                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| References II                                                                                                                                                                                                                  |                                                                                                                                                                                 |                                                                                                                                                       |
| <pre>propagation of the COVII<br/>10.1101/2020.05.09<br/>http://medrxiv.org<br/>(visited on 06/12/2023).<br/>Palguta, Jan, Rene Levii<br/>accelerate the COVID-1<br/>In: Journal of Population<br/>1432-1475. DOI: 10.10</pre> | D-19 in Spain. en. prepri<br>.20096339. URL:<br>/lookup/doi/10.110<br>insky, and Samuel Skod<br>9 pandemic?: Evidence f<br><i>Economics</i> 35.1, pp. 197<br>07/s00148-021-0087 | da (Jan. 2022). "Do elections<br>from a natural experiment". en.<br>7–240. ISSN: 0933-1433,                                                           |
| trade-offs between dail<br>43, p. 100354. ISSN: 175<br>https:                                                                                                                                                                  | y scheduling choices".e<br>555345.DOI:10.1016/<br>ier.com/retrieve/p                                                                                                            | ire (June 2022). "Capturing<br>en. In: Journal of Choice Modelling<br>/j.jocm.2022.100354.URL:<br>pii/S1755534522000124<br>EPFL @muere                |
| Transport and Mobility Laboratory                                                                                                                                                                                              | STRC 2024                                                                                                                                                                       | <ul> <li>&lt; □ ▷ &lt; ○ ○</li> <li>August 15, 2024</li> <li>18/20</li> </ul> |

References

| Introduction<br>OO | Methodology<br>0000 | Results<br>0000000 | Conclusion<br>OO | References |
|--------------------|---------------------|--------------------|------------------|------------|
|                    |                     |                    |                  |            |

## References III



Salon, Deborah et al. (Mar. 2021). COVID Future Wave 1 Survey Data v1.0.0. en. DOI: 10.48349/ASU/Q07BTC. URL: https://dataverse.asu.edu/dataset.xhtml?persistentId=doi: 10.48349/ASU/Q07BTC (visited on 07/11/2023).



19/20

Transport and Mobility Laboratory

#### Results Risk Perception Latent Model

| Name                    | Value   | Rob. Std err | Rob. t-test | Rob. p-value       |
|-------------------------|---------|--------------|-------------|--------------------|
| B_att_covid_5           | -0.668  | 0.0521       | -12 · 8     | 0                  |
| B_att_covid_2           | 0.375   | 0.049        | 7.65        | 1.98 <i>e</i> - 14 |
| B_att_covid_1           | 0.275   | 0.0534       | 5.15        | 2.64e - 07         |
| B_att_covid_3           | 0.451   | 0.0523       | 8.61        | 0                  |
| B_risk_percp_1          | 0.39    | 0.0545       | 7.16        | 8.31 <i>e</i> - 13 |
| B_risk_percp_2          | 0.106   | 0.0389       | 2.74        | 0.00623            |
| B_risk_percp_3          | 0.19    | 0.0431       | 4.4         | 1.1 <i>e</i> - 05  |
| B_risk_percp_5          | 0.101   | 0.0362       | 2.78        | 0.00539            |
| B_risk_percp_6          | 0.291   | 0.0447       | 6.5         | 7.85 <i>e</i> – 11 |
| INTERSECT_att_covid_5   | -0.167  | 0.0307       | -5.43       | 5.62 <i>e</i> - 08 |
| INTERSECT_att_covid_2   | -0.318  | 0.0302       | -10.5       | 0                  |
| INTERSECT_att_covid_1   | -0.0736 | 0.0323       | -2.28       | 0.0229             |
| INTERSECT_att_covid_3   | -0.302  | 0.0325       | -9.29       | 0                  |
| INTERSECT_risk_percp_1  | 0.199   | 0.0326       | 6.1         | 1.09e - 09         |
| INTERSECT_risk_percp_2  | 0.0404  | 0.0228       | 1.77        | 0.0764             |
| INTERSECT_risk_percp_3  | -0.35   | 0.0268       | -13 · 1     | 0                  |
| INTERSECT_risk_percp_5  | -0.0892 | 0.0222       | -4.02       | 5.88 <i>e</i> - 05 |
| INTERSECT_risk_percp_6  | -0.305  | 0.0278       | -11         | 0                  |
| SIGMA_STAR_att_covid_5  | 0.806   | 0.0167       | 48.4        | 0                  |
| SIGMA_STAR_att_covid_2  | 0.639   | 0.0164       | 39.1        | 0                  |
| SIGMA_STAR_att_covid_1  | 0.696   | 0.0161       | 43.2        | 0                  |
| SIGMA_STAR_att_covid_3  | 0.768   | 0.0178       | 43.3        | 0                  |
| SIGMA_STAR_risk_percp_1 | 0.6     | 0.0144       | 41.6        | 0                  |
| SIGMA_STAR_risk_percp_2 | 0.402   | 0.00955      | 42.2        | 0                  |
| SIGMA_STAR_risk_percp_3 | 0.513   | 0.0133       | 38.6        | 0                  |
| SIGMA_STAR_risk_percp_5 | 0.448   | 0.0106       | 42          | 0                  |
| SIGMA_STAR_risk_percp_6 | 0.535   | 0.0133       | 40.2        | 0                  |
| coef_bachelors_or_more  | -0.244  | 0.0474       | -5.14       | 2.8e – 07          |
| coef_gender_female      | -0.376  | 0.0408       | -9.22       | 0                  |
| coef_intercept          | -0.239  | 0.0464       | -5.15       | 2.55e - 07         |
| coef_zone_West          | 0.156   | 0.0402       | 3.88        | 0.000106           |
| delta_1                 | 0.209   | 0.0049       | 42.7        | 0                  |
| delta_2                 | 0.48    | 0.0103       | 46.8        | 0                  |

#### Table: Results parameters Latent model



Transport and Mobility Laboratory

August 15, 2024

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A