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How do we link these communities?
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Changes in Behaviour
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Transportation Community

1 Activity-travel behaviour impacts disease spread.
2 Imposed activity restrictions change how people schedule their day.
3 Risk perception in performing activities changes how people schedule theirday.
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Description of the Data

A synthetic population provided by
He et al. 2020:

i. Information on individuals:
Age, Gender, Employment sta-
tus, and Education level.

ii. Geographic network data:
Coordinates assigned to nodes,
and Specific activity types tagged
to nodes (leisure, education,
shop, work, home)

COVID Future Wave 1 Survey Data (see Salon
et al. 2021)

i. Attitudinal variables of individuals Yin:
Reflecting risk perceptions and concerns regard-
ing the pandemic.

ii. Demographic information k of individ-
uals n represented as xkn:

Age, Gender, Education level, Region, and
Race.
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1 if Y ∗
in < τ1,

2 if τ1 ≤ Y ∗
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3 if τ2 ≤ Y ∗
in < τ3,

4 if τ3 ≤ Y ∗
in < τ4,

5 if τ4 ≤ Y ∗
in.
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We use risk-perception
activities indicators:

i = a

Linking the RPLM
with the ABMR Model:

τ ′a = τa
1

1 + exp(−υ1(Yan − υ2))

Each element of P
is defined as a parameterφℓ,a.

ℓ =





closure restrictions 1

time slot starting restrictions 2

time slot closing restrictions 3

peak hour restrictions 4

travel time restrictions 5

curfew restrictions 6

1

ABRM Model

The framework is build upon Pougala, Hillel, and Bierlaire 2022.

Case Study
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Results: Case Study - Population of NYC

We pick the scenario:
Tested Scenarios Closure Constraints

Secondary Education Work Curfew
No restrictionsOuting limitations xEarly curfew 5pmEconomy preservation x xWork-education balance x x

Tested scenarios, each one considering different NPIs as input to the ABM
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Results

a. Aggregated Results: results across scenarios

c. Disaggregated Results: results across individuals
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Results across individuals: insights on behavior
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b. Aggregated results: insights on the RPLM
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Results after applying the Risk Perception Latent state

Figure: Changes in Hourly Count of Individuals per activity when including the Risk PerceptionLatent Model.
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Aggregated results: insights on activity durations

Figure: Total Duration, Average Duration and Average Total Deviation Start per Activity Type .

Transport and Mobility Laboratory STRC 2024 May 29, 2024 14 / 20

Observations
a. Constraints work as expected. b. The percep-
tion of risk decreases activity participation. c.
The schedules seem realistic. d. We capture the
activity-swapping phenomena.

Conclusion
Conclusion

i. Computationally efficient tool to model individual
schedules for epidemiological models, capable of run-
ning 10,000 individuals with 5,000 facilities in 50 minutes.
ii. Able to capture the ’swapping-activities’ effect.
iii. Able to model government-imposed mobility re-
strictions and self-imposed changes due to perceived
risks.

Future Work
i. Expand the sample to 300,000 individuals and cal-
ibrate the latent model with more socioeconomic vari-
ables.
ii. Embed the activity-based model into an epidemio-
logical model to optimize policies.
iii. Validate the model with real data.
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