Bridging Epidemiology and Mobility: Creating a Policy-Aware Activity-Based Model for Epidemiological Studies

C. Cortes Balcells^{*a*}, R. Krueger^{*b*}, F. Torres^{*a*}, M. Bierlaire^{*a*}

^aTransport and Mobility Laboratory, École Polytechnique Fédérale de Lausanne (EPFL) ^bDepartment of Technology, Management and Economics, Technical University of Denmark (DTU)

Introduction

Description of the Data

- Activity-travel behaviour impacts disease spread.
- Imposed activity restrictions change how people schedule their day.
- 3 Risk perception in performing activities changes how people schedule their day.

A synthetic population provided by He et al. 2020:

- i. Information on individuals:
 Age, Gender, Employment status, and Education level.
- ii. Geographic network data:
 Coordinates assigned to nodes, and Specific activity types tagged to nodes (leisure, education, shop, work, home)

COVID Future Wave 1 Survey Data (see Salon et al. 2021)

i. Attitudinal variables of individuals Y_{in} : Reflecting risk perceptions and concerns regarding the pandemic.

ii. Demographic information k of individuals n represented as x_{kn} :

Case Study

Age, Gender, Education level, Region, and Race.

Methodology

ABRM Model

$\max_{\omega, Z, x, \tau} \quad U_0 + \sum_{\alpha=0}^{A} Z_{\alpha}^0(\chi_{\alpha} + V_{\alpha}^1 + V_{\alpha}^2 + \varphi_{5,\alpha} V_{ab}^3) + \sum_{\alpha=0}^{A} \sum_{b=0}^{A} Z_{ab} \cdot \theta_t \cdot \omega_{ab}$

subject to:

$\sum_{a} \sum_{b} (Z_{a}^{0} \cdot x_{a}^{2} + Z_{ab} \cdot \omega_{ab}) = 24$	
$\omega_{\text{dawn}} = \omega_{\text{dusk}} = 1$	
$L_a^2 \ge Z_a^0 \cdot \tau_a^{\min}$	$\forall a \in \mathscr{A}$
$Z_{a}^{2} \leq Z_{a}^{0} \cdot T$	$\forall a \in \mathscr{A}$
$Z_{ab} + Z_{ba} \leq 1$	$\forall a, b \in \mathscr{A}, a \neq b$
$Z_{a,dawn} = Z_{dusk,a} = 0$	$\forall a \in \mathscr{A}$
$\sum Z_{ab} = Z_b^0$	$\forall b \in \mathscr{A}, b \neq dawn$
$\sum_{b}^{a} Z_{ab} = Z_{a}^{0}$	$\forall a \in \mathscr{A}, a \neq dusk$

$(Z_{ab} - 1) \cdot T \le x_a^1 + x_a^2 + Z_{ab} \cdot \boldsymbol{\omega}_{ab} - x_b^1$	$\forall a, b \in \mathscr{A}, a \neq b,$
$(1 - Z_{ab}) \cdot T \ge x_a^1 + x_a^2 + Z_{ab} \cdot \omega_{ab} - x_b^1$	$\forall a, b \in \mathscr{A}, a \neq b$
$\mathbf{x}_{a}^{1} \geq \mathbf{\chi}_{a}^{-}$	$\forall a \in \mathscr{A}$
$\mathbf{x}_a^1 + \mathbf{x}_a^2 \leq \mathbf{\chi}_a^+$	$\forall a \in \mathscr{A}$
$\sum Z_a^0 \leq 1$	$\forall a \in \mathscr{A}$
$a \in \mathscr{F}_a$	
$\varphi_{1,a} Z_a^0 = 0$	$\forall \varphi_{1,a} \in \mathscr{P}, a \in \mathscr{A}$
$\varphi_{2,a} \mathbf{x}_a^1 \ge \varphi_{2,a} \mathbf{t}_{\Theta}^1$	$\forall \phi_{2,\mathfrak{a}} \in \mathscr{P}, \mathfrak{a} \in \mathscr{A}$
$\varphi_{3,a}(\mathbf{x}_a^1 + \mathbf{x}_a^2) \ge \varphi_{3,a} \mathbf{t}_{\Theta}^2$	$\forall \varphi_{3,a} \in \mathscr{P}, a \in \mathscr{A}$
$\varphi_{4,a}(x_a^1 + x_a^2) \le \varphi_{4,a}(t_{\Theta}^3 + 24*(1 - Z_2))$	$\forall \phi_{4, \mathfrak{a}} \in \mathscr{P}, \mathfrak{a} \in \mathscr{A}$
$\varphi_{4,a} x_a^1 \ge \varphi_{4,a}(t_{\Theta}^4 - 24 * (1 - Z_1))$	$\forall \phi_{4, \mathfrak{a}} \in \mathscr{P}, \mathfrak{a} \in \mathscr{A}$
$\varphi_{4,a}(Z_1+Z_2-1)\geq 0$	$\forall a \in \mathscr{A}$
$\varphi_{5,a}(Z_{ab}\cdot\omega_{ab})\leq \varphi_{5,a}t_{\Theta}^{5}$	$\forall \varphi_{5,a} \in \mathscr{P}, a \in \mathscr{A}$
$\phi_{6,a}\tau_{dawn} \leq \phi_{6,a} t_{\Theta}^6$	$\forall a \in \mathscr{A}$
$\varphi_{6,a} \mathbf{x}_{dusk} \geq \varphi_{6,a} \mathbf{t}_{\Theta}^7$	$\forall a \in \mathscr{A}$

where:

 $V_{a}^{1} = \theta_{a}^{early} \cdot \max(0, \kappa_{a} - x_{a}^{1} - \Delta_{a}^{early}) + \theta_{a}^{late} \cdot \max(0, x_{a}^{1} - \kappa_{a} - \Delta_{a}^{late})$ $V_{a}^{2} = \theta_{a}^{short} \cdot \max(0, \tau_{a} - x_{a}^{2} - \Delta_{a}^{short}) + \theta_{a}^{long} \cdot \max(0, x_{a}^{2} - \tau_{a} - \Delta_{a}^{long})$ $V_{ab}^{3} = \theta_{t} \cdot \omega_{ab}$

The framework is build upon Pougala, Hillel, and Bierlaire 2022.

Tested Scenarios	Closure			Constraints
	Secondary	Education	Work	Curfew
No restrictions				
Outing limitations	Х			
Early curfew				5pm
Economy preservation	Х	Х		
Work-education balance		Х	Х	

Results

a. Aggregated Results: results across scenarios

b. Aggregated results: insights on the RPLM

Conclusion

Conclusion

i. Computationally efficient tool to model individual schedules for epidemiological models, capable of running 10,000 individuals with 5,000 facilities in 50 minutes.
ii. Able to capture the 'swapping-activities' effect.
iii. Able to model government-imposed mobility restrictions and self-imposed changes due to perceived

d. Aggregated results: insights on activity durations

Observations

a. **Constraints work** as expected. b. The perception of **risk decreases activity participation**. c. The **schedules** seem **realistic**. d. We capture the **activity-swapping** phenomena.

risks.

Future Work

i. Expand the sample to **300,000 individuals** and calibrate the latent model with more socioeconomic variables.

ii. Embed the activity-based model into an epidemiological model to optimize policies.iii. Validate the model with real data.

References

