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Introduction

Oligopolistic competition

Demand: consumers as utility maximizers.
Supply: producers as profit maximizers.

Market power: suppliers make strategic decisions which take into
account interactions between actors.
Interactions:

Supply-demand
Supply-supply
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Demand-based optimization

Demand: discrete choice

Customers make indivisible and mutually exclusive purchases.

Customers have different tastes and socioeconomic characteristics
that influence their choice.

Discrete choice models take into account preference heterogeneity
and model individual decisions.
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Demand-based optimization

Demand: discrete choice

Nonlinear formulation:

The probability of customer n ∈ N choosing alternative i ∈ I depends on the
discrete choice model specification.

For logit models there are closed-form expressions, e.g. for MNL:

Pin = exp(Vin)∑
j∈I exp(Vjn)

For other discrete choice models, there are no closed-form expressions and
numerical approximation is needed.
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Demand-based optimization

Demand: discrete choice
Linearized formulation [Pacheco Paneque et al., 2017]:

A linear formulation can be obtained by relying on simulation to draw from
the distribution of the error term of the utility function.

For all customers and all alternatives, R draws of are extracted from the error
term distribution. Each ξinr corresponds to a different behavioral scenario.

Uinr = Vin + ξinr

In each scenario, customers choose the alternative with the highest utility:

winr = 1 if Uinr = max
j∈I

Ujnr , and winr = 0 otherwise

Over multiple scenarios, the probability of customer n choosing alternative i
is given by

Pin =
∑

r∈R winr

R .
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Demand-based optimization

Supply: optimization

Suppliers choose the strategy that maximizes their profits.

Decisions can include the price, but also quantity, quality and availability of
the offered products. The related variables can be continuous or discrete.

Discrete choice models are embedded into the optimization problem of the
suppliers.

Constrained optimization models can describe the supplier problem.
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Demand-based optimization

Demand-based optimization: nonlinear model

max
s=(p,X)

zs =
∑
i∈Ik

∑
n∈N

pinPin −
∑
i∈Ik

ci (s,w)

s.t. Pin = exp(Vin)∑
j∈I exp(Vjn) ∀i ∈ I,∀n ∈ N

Vin = βp
inpin + βinXin + qin ∀i ∈ I,∀n ∈ N

Other constraints
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Demand-based optimization

Non-concavity of the profit function

From the MOOC Introduction to Discrete Choice Models (Michel Bierlaire and Virginie Lurkin)
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Demand-based optimization

Demand-based optimization: linear model

max
s=(p,X)

zs =
∑
i∈Ik

∑
n∈N

pinPin −
∑
i∈Ik

ci (s,w)

s.t. Pin = 1
R

∑
r∈R

winr ∀i ∈ I,∀n ∈ N

Uinr = βp
inpin + βinXin + qin + ξinr ∀i ∈ I,∀n ∈ N,∀r ∈ R

Uinr ≤ Unr ∀i ∈ I,∀n ∈ N,∀r ∈ R
Unr ≤ Uinr + MUnr (1− winr ) ∀i ∈ I,∀n ∈ N,∀r ∈ R∑
i∈I

winr = 1 ∀n ∈ N,∀r ∈ R

Other constraints
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Oligopolistic market equilibrium

Supply-supply interactions

We consider non-cooperative games.

Pure strategy Nash equilibrium solutions: stationary states of the system in
which no competitor has an incentive to change its decisions.

Existence, uniqueness, algorithms to find them.
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Oligopolistic market equilibrium

Oligopolistic market equilibrium

Literature on continuous problems, e.g. electricity markets [Sherali et al.,
1983, Pang and Fukushima, 2005, Leyffer and Munson, 2010].

General assumptions:
3 continuously differentiable demand curve;
3/ 7 continuously differentiable supply curve;
7 concave profit function.

We have no proof of existence.

We can still search for pure strategy equilibria:
Fixed-point iteration method
Fixed-point MIP model
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Oligopolistic market equilibrium

The fixed-point iteration method

Sequential algorithm to find an equilibrium solution of a k-player game:

Initialization: players start from an initial feasible solution.
Iterative phase: players take turns and each plays its best response pure
strategy to the current solution.
Termination: a Nash equilibrium or a cyclic equilibrium is reached.

Plots by Nicolas Pradignac (EPFL)
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Oligopolistic market equilibrium

The fixed-point iteration method: applications

Used in Adler [2001] and Adler et al. [2010] to study a deregulated air
transportation market and multimodal rail-air competition.

Multinomial logit and nested logit to model demand. Due to non-concavity,
there can be zero, one or more than one pure strategy equilibria.

Different initial states lead to different solutions. No discrimination between
different equilibrium or cyclic equilibrium solutions.

Case studies related to strategic level decisions: generalizations and averages
are reported.

Also used in Maskin and Tirole [1988] to model dynamic oligopolies in which
firms make short-term commitments.
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Oligopolistic market equilibrium

The fixed-point MIP model

We can minimize the distance between two consecutive iterations.

A generic solution for an oligopolistic market with k players: s ′

1, s
′

2, ..., s
′

k ,
with s ′

k = (pk ,Xk).

Optimization problems for the suppliers:

s
′′

k = arg max
sk∈SK

Vk(sk , s
′

K\{k})

All supplier simultaneously solve a best-response problem to the initial
(unknown) solution.

This approach requires finite sets of strategies.
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Oligopolistic market equilibrium

The fixed-point MIP model

Minimization problem:

z∗ = min
∑
k∈K
|s

′′

k − s
′

k |

If z∗ = 0, we have an equilibrium solution.
If z∗ > 0, can we still derive meaningful information?

The objective function allows to discriminate between different equilibrium
or near-equilibrium solutions.
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Algorithmic framework

Algorithmic framework: motivation

Transport oligopolies: large problems with heterogeneous demand and many
constraints and decision variables on the supply side.

Neither traditional microeconomic nor game-theoretic approaches are
applicable as such.

Equilibrium problems 6= optimization problems.

In real-life problems equilibrium is quite loosely defined.
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Algorithmic framework

Algorithmic framework: our methodology

1 Identify candidate equilibrium solutions or regions efficiently.

2 Use exact method on restricted strategy sets derived from candidate
solutions to find subgame equilibria: fixed-point MIP model, linearized
formulation.

3 Verify if best-response conditions are satisfied for the initial problem.
If they are not, add strategies to the restricted problem and go to step 2.

4 Compare different equilibrium or near-equilibrium solutions: ε-equilibria
[Radner, 1980].
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Algorithmic framework

Step 1: identify candidate equilibrium regions

The sequential game generally converges to an ”interesting” region of the
solution space within few iterations.

At this stage any fast heuristic that finds near-optimal solutions of the
demand-based optimization model is good.

Nonlinear formulations are faster than the linear formulation for simple
discrete choice models. Their performance rapidly deteriorates in case of
more complex choice models or with discrete supply decisions.
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Algorithmic framework

Steps 2 and 3: captive customers

The linearized formulation is combinatorial on the sets I, N, R and S. We
need to reduce the dimension of the problem to use the fixed-point MIP
model efficiently.

Optimal strategies at equilibrium are determined by a subset of undecided
customers.

Within a limited range of supply decisions (e.g. prices), most customers are
captive.

The simulation of the error term of the utility function and the use of binary
variables allows to precompute choices through lower and upper bounds.

LB(Uinr ) > max
j∈I:j 6=i

UB(Ujnr ) =⇒
{

winr = 1
wjnr = 0 ∀j ∈ I, j 6= i
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Algorithmic framework

Steps 2 and 3: a column-generation-like approach

The fixed-point MIP model is used to solve a subgame with restricted
strategy sets initially derived from the results of step 1.

The optimal solution of the restricted problem is a subgame equilibrium,
which is then verified on the initial game by solving best-response problems.

If any supplier can improve its profits considerably (more than ε), the
subgame equilibrium is not accepted as game equilibrium.
Best-response strategies are added to the restricted set.
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Algorithmic framework

Step 4: ε-equilibrium solutions

A number of ε-equilibrium with different tolerance factors is provided at the
end of the algorithmic framework.

Ex-post analyses could answer questions about dominance, Pareto optimality
or tacit collusion.
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Numerical experiments and case study

Testing the framework

We can use existing discrete choice model estimations available in the
literature.

Tests on two transportation datasets:
Urban parking choice (proof of concept)
High-speed rail competition (case study)
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Numerical experiments and case study

Urban parking choice

Mixed multinomial logit model. Parameter estimation taken from the
literature [Ibeas et al., 2014].

Users choose among 3 options: free on-street parking, paid on-street
parking, paid underground parking.

Supply scenario: paid parking options are owned by two different operators,
while free parking is considered as the opt-out option.

Choice model parameters: income, car model and age, trip origin.
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Numerical experiments and case study

High-speed rail competition

Single European Railway Directive (2012) and Railway Packages promoting
open access operations on European railways.

In 2012 Italy was the first country to open to high-speed rail competition.

Plethora of ex-ante and ex-post research [Ben-Akiva et al., 2010, Cascetta
and Coppola, 2012, Valeri, 2013, Mancuso, 2014, Cascetta and Coppola,
2015, Beria et al., 2016].

Liberalization of passenger railway transport to be effective all over Europe
in December 2020.
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Numerical experiments and case study

High-speed rail competition

Demand:

RP/SP survey collected in 2010 to forecast demand and market shares in
the competitive market [Cascetta and Coppola, 2012].

Discrete choice model estimation using multinomial logit and nested logit.

Supply:

Scenarios based on the current market for the Milan-Rome OD pair, with
prices as decision variables.

Mode-class choice (cost, travel time, reason for travel, income, origin).

Mode-run choice scenario (previous attributes and socio-economic
characteristics plus early/late arrival).
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Numerical experiments and case study

High-speed rail fare structures

SB, VL, MB A demand-based optimization approach to model oligopolistic competition 34 / 45



Numerical experiments and case study

High-speed rail fare structures
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Numerical experiments and case study

Numerical experiments: sequential game
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Numerical experiments and case study

Numerical experiments: column-generation-like approach

Supplier | S | Alternative Bounds MIP Best-response
ε

LB UB Price Profit Price Profit

Supp1 6 1st 95.11 98.10 95.11 715 98.09 737 0.032nd 66.12 77.98 66.12 76.21

Supp2 6 1st 86.45 95.62 93.39 644 90.21 6522nd 70.88 86.28 82.43 86.34

Table: Iteration 1
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Numerical experiments and case study

Numerical experiments: column-generation-like approach

Supplier | S | Alternative Bounds MIP Best-response
ε

LB UB Price Profit Price Profit

Supp1 7 1st 95.11 98.10 96.60 733 98.03 7372nd 66.12 77.98 71.55 72.22

Supp2 7 1st 86.45 95.62 90.21 654 93.81 670 0.0232nd 70.88 86.34 86.34 71.67

Table: Iteration 2
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Numerical experiments and case study

Numerical experiments: column-generation-like approach

Supplier | S | Alternative Bounds MIP Best-response
ε

LB UB Price Profit Price Profit

Supp1 8 1st 95.11 98.10 95.11 702 97.73 707 0.0082nd 66.12 77.98 66.12 66.92

Supp2 8 1st 86.45 95.62 93.81 649 90.21 6522nd 70.88 86.34 71.67 86.34

Table: Iteration 3
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Numerical experiments and case study

Numerical experiments: ε-equilibrium solutions

Equilibrium Supplier 1 Supplier 2
ε

1st 2nd Profit 1st 2nd Profit

E1 91.71 82.18 719 91.42 72.35 705 0.012

E2 96.20 85.02 758 99.56 80.65 721 0.029

E3 93.96 83.60 708 91.42 72.35 714 0.019

E4 92.64 82.65 722 101.80 70.93 728 0.021

E5 95.08 84.31 755 100.21 80.52 720 0.020

Table: List of ε-equilibrium solutions

SB, VL, MB A demand-based optimization approach to model oligopolistic competition 40 / 45



Numerical experiments and case study

Summary

Demand-based optimization: discrete choice models are embedded in the
optimization problem of the supplier (nonlinear and linearized formulations).

Oligopolistic competition: equilibrium solutions, if they exist, can be found
by solving a fixed-point problem.

Algorithmic approach:

quickly find candidate equilibrium regions;
solve subgames with a fixed-point MIP model and check solution by
computing best responses on the original solution space;
compare different equilibrium or ε-equilibrium solutions.

Application to a real-life case study: flexible and scalable framework,
interpretable results.
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Numerical experiments and case study

Questions and discussion time

Stefano Bortolomiol
Transport and Mobility Laboratory (TRANSP-OR)
École Polytechnique Fédérale de Lausanne (EPFL)
Email: stefano.bortolomiol(at)epfl.ch
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