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Competition in transportation

e Competition is often present in the form of oligopolies (regulations,
limited capacity of the infrastructure, barriers to entry, etc.).
@ Deregulation often led to oligopolistic markets.

o Airlines
e Railways
o Buses
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Trending topic

FLIXBUS ET EUROBUS
S'ALLIENT POUR DESSERVIR LA SUISSE

Les deux compagnies de bus Flixbus et Eurobus se sont mises d'accord pour
démarrer le cabotage en Suisse a partir du 10 juin. C'est une concurrence

accrue pour les CFF.
&

Flixbus s'implante en Suisse_A partir du 10 juin, la compagnie
allemande de bus desservira les trajets St-Gall-Aéroport de
Gendéve, Coire-Sion, Coire-Aérapart de Zurich et Bale
EuroAirpart-Lugano. Elle s'associe avec Eurabus, la plus
grande entreprise de bus en Suisse, révile le Blick

PAR PASCAL SCHMUCK

Réforme de la SNCF : & quoi va ressembler |a suite aprés le vote du ...
LCI - 5 hours ago
Aprés son vote par I'Assemblée en avril, puis par le Sénat le 5 juin, le projet de loi de
réforme de la SNCF doit faire 'objet d'une commission ...
Réforme de la SNCF. Faut-il vous préparer a une poursuite de la .
Ouest-France - 6 Jun 2018
Contre |a réforme ferroviaire, les cheminots envahissent le siége de la .
Le HuffPost - 5 Jun 2018
SNCF : le Sénat a voté le projet de réforme ferroviaire
Franceinfo - 6 Jun 2018
Vote au Sénat de la réforme de la SNCF : la gréve n'est pas finie
In-Depth - La Tribune.fr - 6 Jun 2018
Le Sénat vote la réforme de la SNCF
In-Depth - Le Figaro - 5 Jun 2018
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How to study competitive transport markets?

@ Modelling demand
@ Modelling supply

@ Modelling competition
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Modelling demand

e Each customer chooses the alternative that maximizes his/her utility.

@ Customers have different tastes and socioeconomic characteristics
that influence their choice.

SB, VL, MB Modelling competition in demand-based optimization models 7/29



Modelling supply

@ Operators take decisions that optimize their objective function
(e.g. revenue maximization).

@ Decisions can be related to pricing, capacity, frequency, availability ...

@ Decisions are influenced by:
e The preferences of the customers
e The decisions of the competitors
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Modelling competition

@ We consider non-cooperative games.

@ We aim at understanding the Nash equilibrium solutions of such
games, i.e. stationary states of the system in which no competitor has
an incentive to change its decisions.
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Modelling the problem

© Modelling the problem
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Modelling the problem

Starting point:

MILP for the demand-based optimization problem for one operator
(Pacheco et al. (2017)).

The goal:

MILP that models the non-cooperative multi-leader-follower game played
by operators and customers.
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The framework

Three-level framework: customers, operators and market.

© Customer level: discrete choice models take into account preference
heterogeneity and model individual decisions. These can be integrated
in a MILP by relying on simulation to draw from the distribution of
the error term of the utility function.
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Modelling the problem

The framework

Three-level framework: customers, operators and market.

© Customer level: discrete choice models take into account preference
heterogeneity and model individual decisions. These can be integrated
in a MILP by relying on simulation to draw from the distribution of
the error term of the utility function.

@ Operators level: a mixed integer linear program can maximize any
relevant objective function.

© Market level: Nash equilibrium solutions are found by enforcing best
response constraints.
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Modelling the problem

The framework: customer level

@ For all customers n € N and all alternatives i € I, R draws are extracted
from the error term distribution, each corresponding to a different behavioral
scenario. For each r € R we have:

Uinr = ﬂinpin + qin + ginr
where pj, is a variable endogenous to the optimization model, 3;, is the
corresponding parameter, g;, is the exogenous term and &;,, is the error
term.

@ In each scenario, customers choose the alternative with the highest utility:

Win, = L1 if Uppy = malx Ujnr, and wip, = 0 otherwise
j€

@ Over multiple scenarios, the probability of n € N choosing i € [ is given by:

ZrGR Winr

Pin: R

SB, VL, MB Modelling competition in demand-based optimization models 13 /29



The framework: operators level

@ We assume that an operator k € K can decide on price p;, and availability
Yin of each alternative i € Cy for all customers n € N.

@ Stackelberg game: the operator (the leader) knows the best response of the
customers (" collective” follower) to all strategies.

@ Objective function to be maximized by operator k:

Vk = % Z Z ZpinWinr

i€Ck neEN rerR
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Modelling the problem

The framework: market level

The payoff of an operator also depends on the strategies of the competitors

Let's define as Xj the set of strategies that can be played by operator k € K

Condition for Nash equilibrium (best response constraints):

Vi = Vk* = max Vk(xk7XK\{k}) Vk e K
Xk

Nash (1951) proves that every finite game has at least one mixed strategy
equilibrium solution
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A fixed-point iteration method

Fixed-point algorithm (starting strategy p2 = 0.7)
|

0.95
@ Sequential algorithm to find Nash Wl piet
equilibrium solutions of a two-player ossl | o

game:

e Initialization: one player
selects an initial feasible

strategy.

o lterative phase: operators take ' -
turns and each plays its best 4, Fisedpointalgoritum (starting strategy p2 =0.7)
response pure strategy to the ) L
last strategy played by the | B e
competitor. 7

e Termination criterion: either a 3 3

.- . . 15/\,\%,__,\,\/\—\‘,__,\,\/\—

Nash equilibrium or a cyclic !
equilibrium is reached. B

Iteration
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A fixed-point iteration method

@ The algorithm reproduces the behavior of two or more operators that
do not know the competitors’ objective function.

o Different initial strategies can lead to different equilibria.

@ There is no guarantee that a pure strategy Nash equilibrium exists or
that it is unique.
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MILP formulations

Pure strategies:
@ Each operator k € K chooses a pure strategy from a finite set Sy.
@ Number of pure strategy solutions of the game: [S| =[], Sk-

@ For each solution s € S we can derive a payoff function Vs for each
operator k € K.

@ If s € S includes only best response strategies for all operators, then
it is a pure strategy Nash equilibrium for the finite game.
Mixed strategies:

@ Operator k chooses a mixed strategy from the finite set Sy, i.e. a
vector of probabilities ps, associated to all pure strategies sy in S,

such that > s ps, = 1.
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Modelling the problem

Customer level

Customer constraints:

Z Winrs = 1
iel
Winrs < Yinrs
Yinrs < Yins
Yins =0
D Wins £ G
neN
CiWins = Yinrs) < Z Wimrs
meN:Lj, <L,
Wimps < (Ci = 1inrs + (0 = (1 = Yinrs)
meN:Lim<Lip

d
Uinrs = BinPins + din + &inr
bUnr < zjpps < 1bUnr + MUn,yinrs
Uinrs — MU,,,(1 = Yinrs) < Zinrs < Ujnys
Zinrs < Unr

Unr < ziprs + My, (1 = Winys)
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Vn € N,Vr € R, Vs

Viel,¥Yne N,Vr € R, Vs

Viel,Vnée N,Vr € R, Vs
Viel,Vvne N:i¢g Cp, Vs

Vi e I\ {0},Vr € R, Vs

I\ {0},Vn € N,Vr

I\ {0},Vn € N,Vr

Vi€ l,vn
Vi€ l,Vn

N, Vr
N, Vr

Vi€ l,Vn

€
€

Vi€ l,Vn € N,Vr
€ N, Vr
€

Vi€ l,Vn e N,Vr

R, Vs
R, Vs
R, Vs
R, Vs
R, Vs
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Modelling the problem

Operator and market level (Pure strategies)

Find s € S such that es = 1

s.t.

Equilibrium constraints:

> Y xe — (K - 1)

keK

es < Xks

Operator constraints:
1
Vis = = ST PinsWines
i€CneNrer
Vis < Vg™
Vie™ < Vi + Me(1 = i)

S xs = |5

seS
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Vse S

Vk € K,Vs €S

Vk e K,Vs€ S

Vk € K,Vs € S, Vt € S
Vk € K,Vs € S, Vt € S¢

Vk € K

(13)

(14)

(15)

(16)
n

(18)
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Modelling the problem

Operator and market level (Mixed strategies)

Find Psy s bsk > Isys Vsk’ Vj such that... or  max Z Vi

s.t.

MILP mixed-strategy Nash:

= > »p, ch(Skysk)

sCes¢
Vie > Vs,

I = Vi — Vsk
Psy <1- bsk
re, < Mb,

Pure strategy payoffs:

Vieskr s¢) = Z > > PinsWinrs

R ieC, nenrer
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Vk € K
Vk € K,Vs, € Sk

vk € K, Vs, € Sk
Vk € K,Vs, € S
Vk € K,Vs, € Sk
vk € K, Vs, € Sk

Vk € K,¥(sx,sf) € S

(25)
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Modelling the problem

Numerical example: pure strategy equilibria

Payoff matrix of player 1 Payoff matrix of player 1
81\ 82 0,70 0,73 0,76 079 0,82 0.85 Si\ 82 0.75 077 079 0,81 0.83 0,85
0.50 10,00 | 10,00 | 10,00 [ 10,00 | 10,00 | 10,00 050 10,00 | 10,00 | 10,00 | 10,00 | 10,00 | 10,00
0,33 1049 | 10,60 | 10,60 10,60 | 10.60 | 10,60 032 10,40 | 1040 | 1040 | 1040 | 1040 | 10,40
0,56 10,53 | 1042 | 10,53 | 10,8 | 11,20 | 11,20 034 10.80 | 10,80 | 1080 | 10,80 | 10,80 | 10,80
0,59 10,27 | 10,03 9.80 9.91 10,62 | 1145 0,56 1042 | 10,53 | 10.86 | 11,09 | 11,20 | 11,20
0.62 10,04 | 9.80 942 942 9.42 9,92 058 9.74 9.86 10,09 | 1044 | 1067 | 1137
0,65 9,62 9.36 884 845 8.71 8.58 0,60 9,60 9.60 9,72 10,08 | 1044 | 10,68
Payoff matrix of player 2 Payoff matrix of player 2
81\ 82 0,70 073 0,76 079 0,82 0,85 Si\ 82 075 077 079 0,81 083 0,85
0,50 14,00 | 1445 | 1474 | 14,69 | 14,76 | 14,62 0,50 1470 | 1478 | 1469 | 1474 | 1428 | 14,62
0.33 1400 | 1445 | 1474 | 1501 | 1460 | 1445 032 1470 [ 1509 | 1485 | 1458 | 1461 14.45
0.56 1400 | 1460 | 1474 | 1485 | 1476 | 1428 0.34 1485 | 1494 | 1517 | 1474 | 1444 | 1445
0,59 1400 | 1460 | 1505 | 1548 | 1509 | 1445 0,56 1485 [ 1494 | 1485 | 1490 | 1461 14.28
0.62 14,00 | 1460 | 1520 | 1548 | 1591 | 1581 0.58 1500 | 1509 | 1517 | 1507 | 1511 | 1445
0,65 1400 | 1460 | 1520 | 15,80 | 1591 16,32 0,60 1500 [ 1525 | 1548 | 1539 | 1527 | 1430
(a) Game with 1 pure strategy Nash equilibrium (b) Game with no pure strategy Nash equilibrium

Payoff matrices for two games with different support strategies. Best response payoffs
are in bold. Equilibrium payoffs are in blue.
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Modelling the problem

Numerical example: mixed strategy equilibria

Payoff matrices of player 1 and player 2

S1\ S2 0,75 0,77 0,79 0,81 0,83 0,85 p1 Vi
0,50 10,00 10,00 10,00 10,00 10,00 10,00 0 10,00
0,52 10,40 10,40 10,40 10,40 10,40 10,40 0 10,40
0,54 10,80 10,80 10,80 10,80 10,80 10,80 0.27 10,80
0,56 10,42 10,53 10,86 11,09 11,20 11,20 0.73 10,80
0,58 9,74 9,86 10,09 10,44 10,67 11,37 0 10,05
0,60 9,60 9,60 9,72 10,08 10,44 10,68 0 9,70

S1\ S2 0,75 0,77 0,79 0,81 0,83 0,85
0,50 14,70 14,78 14,69 14,74 14,28 14,62
0,52 14,70 15,09 14,85 14,58 14,61 14,45
0,54 14,85 14,94 15,17 14,74 14,44 14,45
0,56 14,85 14,94 14,85 14,90 14,61 14,28
0,58 15,00 15,09 15,17 15,07 15,11 14,45
0,60 15,00 15,25 15,48 15,39 15,27 14,30
P2 0 0.19 0.81 0 0 0

Vo 14.85 14.94 14.94 14.86 14.56 14.33

SB, VL, MB

Figure: Game with mixed strategy Nash equilibrium
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Modelling the problem

Discussion

@ The model requires finite strategy sets (enumeration), therefore the
problem is solvable with small solution spaces only.

@ The assumption of a finite game requires price discretization.

@ Formulation 1: all pure strategy Nash equilibria of the game can be
found, if they exist.

@ Formulation 2: among the mixed strategy Nash equilibria, it is

possible to select one by choosing a relevant objective function, e.g.
total welfare maximization.
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Current status of the research

© Current status of the research
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A MILP model for the fixed-point problem

@ The fixed-point iteration method stops when the same strategies are
played in two consecutive iterations.

@ What if we can write a MILP model to minimize the "difference” in
strategies between two consecutive iterations?
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A MILP model for the fixed-point problem

@ A solution for a two-operator problem: (xi, x2)

@ Optimization problem for operator 1:
xj = arg max Vi(x1, x2, (Xcust))
X1
@ Optimization problem for operator 2:
x; = arg max Vi (x1, x2, (Xcust))
X2
o Fixed-point problem:

min i — xall + 5 — el
X1,X2,X7 sXo
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Current status of the research

Future work

@ Implement and test the MILP model for the fixed-point problem.
o Efficient search for equilibria in the solution space.

@ Investigation of the concept of Nash equilibrium region for real-life
applications.
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Current status of the research

Questions?

Stefano Bortolomiol

Transport and Mobility Laboratory (TRANSP-OR)
Ecole Polytechnique Fédérale de Lausanne (EPFL)
Email: stefano.bortolomiol(at)epfl.ch
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