Discrete choice models and heuristics for global nonlinear optimization

Michel Bierlaire

Transport and Mobility Laboratory, Ecole Polytechnique Fédérale de Lausanne

Introduction

- Econometrics
 - Discrete choice models
 - Recent development in random utility models
- Operations Research
 - Nonlinear optimization
 - Global optimum for non convex functions

Random utility models

Choice model:

$$P(i|\mathcal{C}_n)$$
 where $\mathcal{C}_n = \{1, \dots, J\}$

Random utility:

$$U_{in} = V_{in} + \varepsilon_{in}$$

and

$$P(i|\mathcal{C}_n) = P(U_{in} \ge U_{jn}, j = 1, \dots, J)$$

Utility is a latent concept

Multinomial Logit Model

- Assumption: ε_{in} are i.i.d. Extreme Value distributed.
- Independence is both across i and n
- Choice model:

$$P(i|\mathcal{C}_n) = \frac{e^{V_{in}}}{\sum_{j \in \mathcal{C}_n} e^{V_{jn}}}$$

Relaxing the independence assumption

...across alternatives

$$\begin{pmatrix} U_{1n} \\ \vdots \\ U_{Jn} \end{pmatrix} = \begin{pmatrix} V_{1n} \\ \vdots \\ V_{Jn} \end{pmatrix} + \begin{pmatrix} \varepsilon_{1n} \\ \vdots \\ \varepsilon_{Jn} \end{pmatrix}$$

that is

$$U_n = V_n + \varepsilon_n$$

and ε_n is a vector of random variables.

Relaxing the independence assumption

- $\varepsilon_n \sim N(0, \Sigma)$: multinomial probit model
 - No closed form for the multifold integral
 - Numerical integration is computationally infeasible
- Extensions of multinomial logit model
 - Nested logit model
 - Multivariate Extreme Value (MEV) models

Family of models proposed by McFadden (1978) Idea: a model is generated by a function

$$G: \mathbb{R}^J \to \mathbb{R}$$

From G, we can build

- The cumulative distribution function (CDF) of ε_n
- The probability model
- The expected maximum utility

Called Generalized EV models in DCM community

1. G is homogeneous of degree $\mu > 0$, that is

$$G(\alpha x) = \alpha^{\mu} G(x)$$

- 2. $\lim_{x_i \to +\infty} G(x_1, \dots, x_i, \dots, x_J) = +\infty, \forall i,$
- 3. the kth partial derivative with respect to k distinct x_i is non negative if k is odd and non positive if k is even, i.e., for all (distinct) indices $i_1, \ldots, i_k \in \{1, \ldots, J\}$, we have

$$(-1)^k \frac{\partial^k G}{\partial x_{i_1} \dots \partial x_{i_k}}(x) \le 0, \ \forall x \in \mathbb{R}_+^J.$$

Cumulative distribution function:

$$F(\varepsilon_1, \dots, \varepsilon_J) = e^{-G(e^{-\varepsilon_1}, \dots, e^{-\varepsilon_J})}$$

- Probability: $P(i|C) = \frac{e^{V_i + \ln G_i(e^{V_1}, \dots, e^{V_J})}}{\sum_{j \in C} e^{V_j + \ln G_j(e^{V_1}, \dots, e^{V_J})}}$ with $G_i = \frac{\partial G}{\partial x_i}$. This is a closed form
- Expected maximum utility: $V_C = \frac{\ln G(\cdot) + \gamma}{\mu}$ where γ is Euler's constant.
- Note: $P(i|C) = \frac{\partial V_C}{\partial V_i}$.

Example: Multinomial logit:

$$G(e^{V_1}, \dots, e^{V_J}) = \sum_{i=1}^J e^{\mu V_i}$$

Example: Nested logit

$$G(y) = \sum_{m=1}^{M} \left(\sum_{i=1}^{J_m} y_i^{\mu_m}\right)^{\frac{\mu}{\mu_m}}$$

Example: Cross-Nested Logit

$$G(y_1, \dots, y_J) = \sum_{m=1}^{M} \left(\sum_{j \in \mathcal{C}} (\alpha_{jm}^{1/\mu} y_j)^{\mu_m} \right)^{\frac{\mu}{\mu_m}}$$

Nested Logit Model

Nested Logit Model

Cross-Nested Logit Model

Issues:

Formulation not in term of correlations

Abbe, Bierlaire & Toledo (2005)

Require heavy proofs

Daly & Bierlaire (2006)

Homoscedasticity

McFadden & Train (2000)

Sampling issues

Bierlaire, Bolduc & McFadden (2006)

Sampling issue

- Sampling is never random in practice
- Choice-based samples are convenient in transportation analysis
- Estimation is an issue
- Main references:
 - Manski and Lerman (1977)
 - Manski and McFadden (1981)
 - Cosslett (1981)
 - Ben-Akiva and Lerman (1985)

Sampling issues

Main result:

- Estimator for random samples is valid of exogenous samples
- It is both consistent and efficient
- If observations are weighted, it becomes inefficient

Exogenous Sample Maximum Likelihood (ESML)

Sampling issue: estimation

Conditional Maximum Likelihood (CML) Estimator

$$\max_{\theta} \mathcal{L}(\theta) = \sum_{n=1}^{N} \ln \Pr(i_n | x_n, s, \theta)$$

$$= \sum_{n=1}^{N} \ln \frac{R(i_n, x_n, \theta) P(i_n | x_n, \theta)}{\sum_{j \in \mathcal{C}_n} R(j, x_n, \theta) P(j | x_n, \theta)}$$

where $R(i,x,\theta)=\Pr(s|i,x,\theta)$ is the probability that a population member with configuration (i,x) is sampled

The main term in the CML formulation is:

$$\frac{R(i, x, \theta)P(i|x, \theta)}{\sum_{j \in \mathcal{C}} R(j, x, \theta)P(j|x, \theta)}$$

$$= e^{V_i + \ln G_i(\cdot) + \ln R(i, x, \theta)}$$

$$\frac{\sum_{j \in \mathcal{C}} e^{V_j + \ln G_j(\cdot) + \ln R(j, x, \theta)}}{\sum_{j \in \mathcal{C}} e^{V_j + \ln G_j(\cdot) + \ln R(j, x, \theta)}}.$$

where index n has been dropped

• Case of MNL model: $G_i = 0$ when $\mu = 1$.

$$\frac{R(i,x,\theta)P(i|x,\theta)}{\sum_{j\in\mathcal{C}}R(j,x,\theta)P(j|x,\theta)} = \frac{e^{V_i+\ln R(i,x,\theta)}}{\sum_{j\in\mathcal{C}}e^{V_j+\ln R(j,x,\theta)}}.$$

- Well-known result: if ESML is used, only constants are biased
- Indeed, $V_i = \sum_k \beta_k x_k + c_i$
- Question: does this generalize to all MEV?
- Answer: NO

The V's are shifted in the main formula

$$\frac{e^{V_i + \ln G_i(\cdot) + \ln R(i, x, \theta)}}{\sum_{j \in \mathcal{C}} e^{V_j + \ln G_j(\cdot) + \ln R(j, x, \theta)}}.$$

• ... but not in the G_i

$$G_i(\cdot) = \frac{\partial G}{\partial e^{V_i}} \left(e^{V_1}, \dots, e^{V_J} \right).$$

 ESML will not produce consistent estimates on non-MNL MEV models.

$$\frac{e^{V_i + \ln G_i(\cdot) + \ln R(i,x,\theta)}}{\sum_{j \in \mathcal{C}} e^{V_j + \ln G_j(\cdot) + \ln R(j,x,\theta)}}.$$

- New idea: estimate $\ln R(i, x, \theta)$ from data
- Cannot be done with classical software
- But easy to implement due to the MNL-like form
- Available in BIOGEME, an open source freeware for the estimation of random utility models:

biogeme.epfl.ch

Reference

Bierlaire, M., Bolduc, D., and McFadden, D. (2006). The estimation of Generalized Extreme Value models from choice-based samples. *Technical report TRANSP-OR 060810*. Transport and Mobility Laboratory, ENAC, EPFL. transp-or.epfl.ch

Global optimization

Motivation:

- (Conditional) Maximum Likelihood estimation of MEV models
- More advanced models:
 - continuous and discrete mixtures of MEV models
 - estimation with panel data
 - latent classes
 - latent variables
 - discrete-continuous models

Global optimization

Objective: identify the global minimum of

$$\min_{x \in \mathbb{R}^n} f(x),$$

where

- $f: \mathbb{R}^n \to \mathbb{R}$ is twice differentiable.
- No special structure is assumed on f.

Literature

Local nonlinear optimization:

- Main focus:
 - global convergence
 - towards a local minimum
 - with fast local convergence.
- Vast literature
- Efficient algorithms
- Softwares

Literature

Global nonlinear optimization: exact approaches

- Real algebraic geometry (representation of polynomials, semidefinite programming)
- Interval arithmetic
- Branch & Bound
- DC difference of convex functions

Literature

Global nonlinear optimization: heuristics

- Usually hybrid between derivative-free methods and heuristics from discrete optimization. Examples:
- Glover (1994) Tabu + scatter search
- Franze and Speciale (2001) Tabu + pattern search
- Hedar and Fukushima (2004) Sim. annealing + pattern
- Hedar and Fukushima (2006) Tabu + direct search
- Mladenovic et al. (2006) Variable Neighborhood search (VNS)

Our heuristic

Framework: VNS

Ingredients:

1. Local search

$$(SUCCESS, y^*) \leftarrow LS(y_1, \ell_{max}, \mathcal{L}),$$

where

- y_1 is the starting point
- ℓ_{max} is the maximum number of iterations
- L is the set of already visited local optima
- Algorithm: trust region

Our heuristic

1. Local search

$$(SUCCESS, y^*) \leftarrow LS(y_1, \ell_{max}, \mathcal{L}),$$

- If $\mathcal{L} \neq \emptyset$, LS may be interrupted prematurely
- If $\mathcal{L} = \emptyset$, LS runs toward convergence
- If local minimum identified, SUCCESS=true

Our heuristic

2. Neighborhood structure

- Neighborhoods: $\mathcal{N}_k(x)$, $k = 1, \ldots, n_{\text{max}}$
- Nested structure: $\mathcal{N}_k(x) \subset \mathcal{N}_{k+1}(x) \subseteq \mathbb{R}^n$, for each k
- Neighbors generation

$$(z_1, z_2, \ldots, z_p) = \mathsf{NEIGHBORS}(x, k).$$

• Typically, $n_{\text{max}} = 5$ and p = 5.

Initialization x_1^* local minimum of f

- Cold start: run LS once
- Warm start: run LS from randomly generated starting points

Stopping criteria Interrupt if

- 1. $k > n_{\text{max}}$: the last neighborhood has been unsuccessfully investigated
- 2. CPU time $\geq t_{\text{max}}$, typ. 30 minutes (18K seconds).
- 3. Number of function evaluations \geq eval_{max}, typ. 10^5 .

Main loop Steps:

1. Generate neighbors of x_{best}^k :

$$(z_1, z_2, \dots, z_p) = \mathsf{NEIGHBORS}(x_\mathsf{best}^k, k).$$
 (1)

2. Apply the *p* local search procedures:

$$(SUCCESS_j, y_j^*) \leftarrow LS(z_j, \ell_{large}, \mathcal{L}).$$
 (2)

3. If SUCCESS $_j$ =FALSE, for j = 1, ..., p, we set k = k + 1 and proceed to the next iteration.

Main loop Steps (ctd):

4. Otherwise,

$$\mathcal{L} = \mathcal{L} \cup \{y_j^*\}. \tag{3}$$

for each j such that SUCCESS $_j = TRUE$

5. Define x_{best}^{k+1}

$$f(x_{\mathsf{best}}^{k+1}) \le f(x)$$
, for each $x \in \mathcal{L}$. (4)

6. If $x_{\text{best}}^{k+1} = x_{\text{best}}^k$, no improvement. We set k = k+1 and proceed to the next iteration.

Main loop Steps (ctd):

7. Otherwise, we have found a new candidate for the global optimum. The neighborhood structure is reset, we set k=1 and proceed to the next iteration.

Output The output is the best solution found during the algorithm, that is x_{best}^k .

Local search

- Classical trust region method with quasi-newton update
- Key feature: premature interruption
- Three criteria: we check that
 - 1. the algorithm does not get too close to an already identified local minimum.
 - 2. the gradient norm is not too small when the value of the objective function is far from the best.
 - 3. a significant reduction in the objective function is achieved.

Neighborhoods

The key idea: analyze the curvature of f at x

- Let v_1, \ldots, v_n be the (normalized) eigenvectors of H
- Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues.
- Define direction w_1, \ldots, w_{2n} , where $w_i = v_i$ if $i \leq n$, and $w_i = -v_i$ otherwise.
- Size of the neighborhood: $d_1 = 1$, $d_k = 1.5d_{k-1}$, $k = 2, \ldots$

Neighborhoods

Neighbors:

$$z_j = x + \alpha d_k w_i, \quad j = 1, \dots, p, \tag{5}$$

where

- α is randomly drawn U[0.75, 1]
- i is a selected index
- Selection of w_i :
 - Prefer directions where the curvature is larger
 - Motivation: better potential to jump in the next valley

Neighborhoods: selection of w_i

$$P(w_i) = P(-w_i) = \frac{e^{\beta \frac{|\lambda_i|}{d_k}}}{2\sum_{j=1}^n e^{\beta \frac{|\lambda_j|}{d_k}}}.$$

- In large neighborhoods (d_k large), curvature is less relevant and probabilities are more balanced.
- We tried $\beta = 0.05$ and $\beta = 0$.
- The same w_i can be selected more than once
- The random step α is designed to generate different neighbors in this case

Numerical results

- 25 problems from the literature
- Dimension from 2 to 100
- Most with several local minima
- Some with "crowded" local minima
- Measures of performance:
 - 1. Percentage of success (i.e. identification of the global optimum) on 100 runs
 - 2. Average number of function evaluations for successful runs

Shubert function

$$\left(\sum_{j=1}^{5} j \cos((j+1)x_1+j)\right) \left(\sum_{j=1}^{5} j \cos((j+1)x_2+j)\right)$$

Numerical results

Competition:

- Direct Search Simulated Annealing (DSSA) Hedar & Fukushima (2002).
- 2. Continuous Hybrid Algorithm (CHA) Chelouah & Siarry (2003).
- 3. Simulated Annealing Heuristic Pattern Search (SAHPS) Hedar & Fukushima (2004).
- 4. Directed Tabu Search (DTS) Hedar & Fukushima (2006).
- General variable neighborhood search (GVNS) Mladenovic et al. (2006)

Numerical results: success rate

Problem	VNS	СНА	DSSA	DTS	SAHPS	GVNS
RC	100	100	100	100	100	100
ES	100	100	93	82	96	
RT	84	100	100		100	
SH	78	100	94	92	86	100
R_2	100	100	100	100	100	100
Z_2	100	100	100	100	100	
DJ	100	100	100	100	100	
$H_{3,4}$	100	100	100	100	95	100
$S_{4,5}$	100	85	81	75	48	100
$S_{4,7}$	100	85	84	65	57	
$S_{4,10}$	100	85	77	52	48	100

Numerical results: success rate

Problem	VNS	СНА	DSSA	DTS	SAHPS	GVNS
R_5	100	100	100	85	91	
Z_5	100	100	100	100	100	
$H_{6,4}$	100	100	92	83	72	100
R_{10}	100	83	100	85	87	100
Z_{10}	100	100	100	100	100	
HM	100		100			
GR_6	100		90			
GR_{10}	100					100
CV	100		100			
DX	100		100			
MG	100					100

Numerical results: success rate

Problem	VNS	СНА	DSSA	DTS	SAHPS	GVNS
R_{50}	100	79		100		
Z_{50}	100	100		0		
R_{100}	100	72		0		

- Excellent success rate on these problems
- Best competitor: GVNS (Mladenovic et al, 2006)

Performance Profile

→ Performance Profile proposed by Dolan and Moré (2002)

Algorithms	Problems									
Method A	20	10	**	10	**	20	10	15	25	**
Method B	10	30	70	60	70	80	60	75	**	**

Performance Profile

→ Performance Profile proposed by Dolan and Moré (2002)

Algorithms	Problems									
Method A	2	1	r_{fail}	1	r_{fail}	1	1	1	1	r_{fail}
Method B					1					r_{fail}

Performance Profile

→ Performance Profile proposed by Dolan and Moré (2002)

Algorithms	S Problems									
Method A	2	1	r_{fail}	1	r_{fail}	1	1	1	1	r_{fail}
Method B	1	3	1	6	1	4	6	5	r_{fail}	r_{fail}

Number of function evaluations (4 competitors)

Number of function evaluations (zoom)

Number of function evaluations (GVNS)

Number of function evaluations (zoom)

Conclusions

- Use of state of the art methods from
 - nonlinear optimization: TR + Q-Newton
 - discrete optimization: VNS
- Two new ingredients:
 - Premature stop of LS to spare computational effort
 - Exploits curvature for smart coverage
- Numerical results consistent with the algorithm design

Global optimization

- Collaboration with Michaël Thémans (EPFL) and Nicolas Zufferey (U. Laval, Québec).
- Paper under preparation

Thank you!

