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Introduction

UCL

CORE

e Econometrics
e Discrete choice models

e Recent development in random utility
models

e Operations Research

e Nonlinear optimization
e Global optimum for non convex functions
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Random utility models

e Choice model:

P(:|C,) where C,, = {1,...,J}

e Random utility:
Uin = Vin + €in
and
P(i|Cy) = P(Usy > Uppj = 1,...,.J)

e Utllity Is a latent concept
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Multinomial Logit Model

e Assumption: ¢;, are I.1.d. Extreme Value
distributed.

e Independence is both across » and n
e Choice model:
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Relaxing the independence assumptic

...across alternatives

o)\ Vi) e

and ¢, 1S a vector of random variables.

that Is
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Relaxing the independence assumptic

en ~ N(0,3): multinomial probit model
e No closed form for the multifold integral
e Numerical integration is computationally
iInfeasible
e Extensions of multinomial logit model
e Nested logit model
e Multivariate Extreme Value (MEV) models
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MEV models

Family of models proposed by McFadden (1978)
ldea: a model is generated by a function

G:-RI SR
From &, we can build

e The cumulative distribution function (CDF) of
En

e The probability model
e The expected maximum utility
Called Generalized EV models in DCM
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MEV models

1. G Is homogeneous of degree i > 0, that Is
G(laxr) = o'G(x)
2. lim G(x1,...,7;,..

Ti;— 100

3. the kth partial derivative with respect to &
distinct x; Is non negative If £ I1s odd and non
positive If k Is even, I.e., for all (distinct)
indices iy, ...,1, € {1,...,J}, we have
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MEV models

e Cumulative distribution function:
F(e1,...,e5) = e Gl hme™))

e Probability: P(i|C) = zj;eVﬁmGﬂevl ..... v With
G; = g’g. This is a closed form
e Expected maximum utility: Vg = &L
where ~ Is Euler’'s constant.
e Note: P(i|C) = .
=2 TRANSP-OR _"-ﬂiﬂ-“
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MEV models

Example: Multinomial logit:

J
Ge"r, ... ") = Ze“vi
i=1
L ]
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MEV models

Example: Nested logit

M [ o
-3 (o)
m=1 \1=1
Example: Cross-Nested Logit

M Hm

Gyt yn) =y D (agmMy;)i

m=1 \ jeC
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Nested Logit Model

Private

Bus Train Car Ped. Bike
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Nested Logit Model

otorized Unmotorized

Bus Train Car Ped. Bike
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Cross-Nested Logit Model

Nest 2

Bus Train Car Ped. Bike
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MEV models

ISsues:
e Formulation not in term of correlations
Abbe, Bierlaire & Toledo (2005)
e Require heavy proofs
Daly & Bierlaire (2006)
e Homoscedasticity
McFadden & Train (2000)
e Sampling issues
Bierlaire, Bolduc & McFadden (2006)
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Sampling issue

e Sampling Is never random In practice

e Choice-based samples are convenient In
transportation analysis

e Estimation Is an issue

e Main references:
e Manski and Lerman (1977)
e Manski and McFadden (1981)
e Cosslett (1981)
e Ben-Akiva and Lerman (1985)
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Sampling issues
Malin result:

e Estimator for random samples is valid of
exogenous samples

e It IS both consistent and efficient

e |f observations are weighted, it becomes
Inefficient

Exogenous Sample Maximum Likelihood (ESML)
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Sampling Issue: estimation

Conditional Maximum Likelihood (CML)
Estimator

maxy £(0) = S In Pr(iy,|z,, s, )

EN: Znaajnae)P(Zn‘xme)

jEC (Jaxna(Q)P(]’xm@)
where R(i,xz,0) = Pr(sl|i,z,0) is the probability

that a population member with configuration (i, x)
IS sampled
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Estimation of MEV models

The main term in the CML formulation Is:
R(i,z,0)P(i|x,0)
Zjec R(]a L, H)P(]’QZ, 9)

eVitInG; (\)+In R(7,2,0)

Z - eVi+tnG;(-)+n R(j,z.0)
je

where index n has been dropped

_I(I’flI

Discrete choice models and heuristics for global nonlinear o p llllllllll p 11111

-sTﬁ'ANSF-[]E



Estimation of MEV models
e Case of MNL model: G; = 0 when . = 1.

R(i,z,0)P(i|x,0) eVitmAGsH)
> jcc RU, 2, 0)P(jla,0) 370, ceVtniuni)
e Well-known result: if ESML is used, only
constants are biased
e Indeed, V; = >, Brzi + ¢
e Question: does this generalize to all MEV?

e Answer: NO
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Estimation of MEV models

e The V's are shifted in the main formula
e‘é—l—lnGi()—l—lnR(i,x,@)

Z - eVitnG;(-)+n R(jx,0)
VIS

.. but not In the G,

oG
DeVi

e ESML will not produce consistent estimates
on non-MNL MEV models.

Gz() — (€V17...,€VJ).
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Estimation of MEV models

eVitn Gi(:)+In R(7,x,0)

Z]EC eVi+tInG;(-)+n R(jx,0)

e New idea: estimate In R(7, z, ) from data
e Cannot be done with classical software

e But easy to implement due to the MNL-like
form

e Avallable in BIOGEME, an open source
freeware for the estimation of random utility
models:

bi ogene. epfl . ch
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Reference

Bierlaire, M., Bolduc, D., and McFadden, D. (2006). The
estimation of Generalized Extreme Value models from
choice-based samples. Technical report TRANSP-OR
060810. Transport and Mobility Laboratory, ENAC, EPFL.
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Global optimization

Motivation:

e (Conditional) Maximum Likelihood estimation
of MEV models
e More advanced models:

e continuous and discrete mixtures of MEV
models

estimation with panel data
latent classes

latent variables
discrete-continuous models

, ® etc...  EOm
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Global optimization

Objective: identify the global minimum of

min /(z).

reR”

where
e f:R" — R Is twice differentiable.
e No special structure is assumed on f.
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Literature

Local nonlinear optimization:

e Malin focus:
e global convergence
e towards a local minimum
e with fast local convergence.

e Vast literature
e Efficient algorithms
e Softwares
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Literature

Global nonlinear optimization: exact approaches

e Real algebraic geometry (representation of
polynomials, semidefinite programming)

e Interval arithmetic

e Branch & Bound
e DC - difference of convex functions
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Literature

Global nonlinear optimization: heuristics

e Usually hybrid between derivative-free
methods and heuristics from discrete
optimization. Examples:

e Glover (1994) Tabu + scatter search

e Franze and Speciale (2001) Tabu + pattern search

e Hedar and Fukushima (2004) Sim. annealing + pattern
e Hedar and Fukushima (2006) Tabu + direct search

e Mladenovic et al. (2006) Variable Neighborhood
search (VNS)

e
ECOLE POLYTECHMIQUE
EDi LAUSANKE
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Our heuristic

Framework: VNS
Ingredients:

1. Local search
(SUCCESS, y*) « LS(y1, max. ).

where

e 1 IS the starting point

e /max IS the maximum number of iterations
e L Is the set of already visited local optima
e Algorithm: trust region
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Our heuristic

1. Local search
(SUCCESS; y*) N Ls(yla Urmax; L)a

o If £L+# 0, LS may be interrupted
orematurely

o If £L =0, LS runs toward convergence

e If local minimum identified,
SUCCESS=true
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Our heuristic

2. Neighborhood structure
e Neighborhoods: Ny(z), k=1,..., nmax

e Nested structure: Ny(z) C Ny1(x) C RY,
for each £

e Neighbors generation
(21, 29,...,%,) = NEIGHBORS(z, k).
e Typically, nmax = 5 and p = 5.
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The VNS framework

Initialization z7 local minimum of f
e Cold start: run LS once

e Warm start: run LS from randomly
generated starting points

Stopping criteria Interrupt if
1. k > nmax. the last neighborhood has been
unsuccessfully investigated

2. CPU time > tmax, typ. 30 minutes (18K

seconds).
3. Number of function evaluations > evalmax,
typ. 10°.
. _l(I’ﬂI
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The VNS framework

Main loop Steps:
1. Generate neighbors of zf .,

(21,22, ..., %)) = NEIGHBORS (2, k).
(1)
2. Apply the p local search procedures:

3. If SUCCESS, =FALSE, forj =1,...,p, we
set k = k + 1 and proceed to the next
iteration.
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The VNS framework

Main loop Steps (ctd):

4. Otherwise,
L=LU{y:}. (3)
for each j such that SUCCESS; =TRUE
5. Define z; L

flapdd) < f(x), foreachx € L. (4)

6. If 227 = 2f ., no improvement. We set

k = k + 1 and proceed to the next iteration.
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The VNS framework

Main loop Steps (ctd):
/. Otherwise, we have found a new candidate
for the global optimum. The neighborhood

structure Is reset, we set k£ = 1 and
proceed to the next iteration.

Output The output Is the best solution found
during the algorithm, that is =} ;.
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| ocal search

e Classical trust region method with
guasi-newton update

o Key feature: premature interruption

e Three criteria: we check that

1. the algorithm does not get too close to an
already identified local minimum.

2. the gradient norm Is not too small when the
value of the objective function is far from
the best.

3. a significant reduction in the objective
function Is achieved.
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Neighborhoods

The key idea: analyze the curvature of f at «

o Letvy,...,v, bethe (normalized)
eigenvectors of H

e Let \q,..., \, be the eigenvalues.

e Define direction wy, ..., wq,, Where w; = v; If
1 < n, and w; = —v,; otherwise.

e Size of the neighborhood: d; =1,
dp, = 1.5d_1, k=2,....

oo )
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Neighborhoods
e Neighbors:

Zj:aj+05dkwia j:17'°°7p7 (5)

where
e o is randomly drawn U|[0.75, 1]
e ; IS a selected index

e Selection of w;:
e Prefer directions where the curvature Is

arger
e Motivation: better potential to jump In the
next valley
¥ _l(I’ﬂI
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Neighborhoods: selection oty

e In large neighborhoods (d;. large), curvature
IS less relevant and probabillities are more
balanced.

e We tried 5 = 0.05 and 5 = 0.
e The same w, can be selected more than once

e The random step « Is designed to generate
different neighbors In this case
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Numerical results

e 25 problems from the literature

e Dimension from 2 to 100

e Most with several local minima

e Some with “crowded” local minima

e Measures of performance:

1. Percentage of success (i.e. identification of
the global optimum) on 100 runs

2. Average number of function evaluations for
successful runs

) ()
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Shubert function

<z jeos((j + a1 + ”)é jeos((j + 1)as + 1))
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Numerical results

Competition:

1. Direct Search Simulated Annealing (DSSA)
Hedar & Fukushima (2002).

2. Continuous Hybrid Algorithm (CHA)
Chelouah & Siarry (2003).

3. Simulated Annealing Heuristic Pattern Search
(SAHPS) Hedar & Fukushima (2004).

4. Directed Tabu Search (DTS) Hedar &
Fukushima (2006) .

5. General variable neighborhood search
(GVNS) Mladenovic et al. (2006)
- TRANSF OR
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Numerical results: success rate

Problem | VNS | CHA | DSSA | DTS | SAHPS | GUNS
RC 100 | 100 | 100 | 100 | 100 100
ES 100 | 100 | 93 | 82 96
RT 84 | 100 | 100 100
SH 78 | 100 | 94 | 92 86 100
R, 100 | 100 | 100 | 100 | 100 100
7y 100 | 100 | 100 | 100 | 100
DJ 100 | 100 | 100 | 100 | 100
Hs. 100 | 100 | 100 | 100 | 95 100
Sis 100 | 85 | 81 | 75 48 100
Sz 100 | 85 | 84 | 65 57
Si.10 100 | 85 | 77 | 52 48 100
. . (0
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Numerical results: success rate

Problem | VNS | CHA | DSSA | DTS | SAHPS | GVNS

Rs 100 | 100 100 85 91

Zs 100 | 100 100 100 100

He 4 100 | 100 92 83 72 100

Rio 100 83 100 85 87 100

Z10 100 | 100 100 100 100

HM 100 100

G Rg 100 90

G R 100 100

CV 100 100

DX 100 100

MG 100 100
I (G
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Numerical results: success rate

Problem | VNS | CHA | DSSA | DTS | SAHPS | GVNS
Rso 100 79 100

Z50 100 | 100 0

Ri00 100 72 0

e EXxcellent success rate on these problems

e Best competitor: GVNS (Mladenovic et al,
20006)
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Performance Profile

— Performance Profile proposed by Dolan and Moré (2002)
Algorithms Problems
MethodA |20 10 ** 10 * 20 10 15 25 **
Method B 10 30 70 60 70 80 60 75 ** **
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Performance Profile

— Performance Profile proposed by Dolan and Moré (2002)

Algorithms Problems
Method A |2 1 74 1 74 1 1 1 1 T fail
Method B 1 3 1 6 1 4 6 S Trail  Tiail
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Performance Profile

— Performance Profile proposed by Dolan and Moré (2002)
Algorithms Problems
Method A |2 1 7 1 74 1 1 1 1 T fail
Method B 1 3 1 6 1 4 6 5 Trei Trai
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Numerical results: efficiency

Number of function evaluations (4 competitors)
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Numerical results: efficiency

Number of function evaluations (zoom)
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Numerical results: efficiency

Number of function evaluations (GVNS)
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Numerical results: efficiency

Number of function evaluations (zoom)
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Conclusions

e Use of state of the art methods from
e nonlinear optimization: TR + Q-Newton
e discrete optimization: VNS

e Two new Iingredients:

e Premature stop of LS to spare
computational effort

e EXxploits curvature for smart coverage

e Numerical results consistent with the
algorithm design
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Global optimization

e Collaboration with Michaél Themans (EPFL)
and Nicolas Zufferey (U. Laval, Québec).

e Paper under preparation

Thank you!
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