Cost Optimization for the Capacitated Railroad Blocking and Train Design Problem

Michel Bierlaire and Burak Boyacı, Viswanathan Prem Kumar, Stefan Binder

Terminology and Problem Definition

Which blocks to be assigned to which trains?

Problem Objectives

- Blocking Problem
 - Combining shipments to form one unit (block)
- Train Design Problem
 - Decide trains origins, destinations and paths
 - Crew segment constraint is also considered
- Block-to-Train Assignment (BTA)
 - Determine which block is assigned to which train
- For our problem, the composition of the blocks are known.

Problem Description

- Model: directed graph
 - Nodes -> train stations
 - The graph is not necessarily complete.

Constraints

- Number of blocks per train
- Number of block swaps per block
- Number of work events per train
- Length and tonnage restrictions on arcs
- Number of trains per arc
- Crew segments

Cost Components

- Fixed setup and travel costs
- Marginal cost per wagon
- Work event cost
- Block swap cost
- Train imbalance cost
- Crew imbalance cost
- Unsatisfied demand

Toy Problem

Block	Origin	Destination	# of cars	Total length	Total tonnage
1	Α	С	50	3000	2500
2	Α	D	25	1500	1250
3	В	D	40	2400	2000
4	D	Α	28	1680	1400
5	D	В	16	960	800

Literature - Motivation

- R.K. Ahuja, K.C. Jha, and J. Liu (2007). Solving real-life railroad blocking problems.
 - MIP formulation of the railroad blocking problem
- K.C. Jha, R.K. Ahuja, and G. Sahin (2008). New approaches for Solving the Block-to-Train assignment Problem.
 - Arc-based and path-based formulation of the block-to-train assignment problem
- Literature assumes that train design (with crew constraints) is given and blocking and BTA are solved separately.
- INFORMS RAS 2011 Competition Problem (with real data)

Cost Breakup

Train start cost	\$400.00
Train travel cost (per mile)	\$10.00
Railcar travel cost (per mile)	\$0.75
Work event cost	\$350.00
Block swap cost	\$40.00 - \$100.00
Crew imbalance penalty	\$600.00
Train imbalance penalty	\$1,000.00
Missed railcar penalty	\$5,000.00

Has highest influence on cost, should be minimized with priority

IDEA:

For each shipment, find path from origin to destination which minimizes travel cost. If no constraints exist, this is the shortest path.

Constraints:

- Length and tonnage restrictions on arcs
- Crew segments

Should be avoided if

possible (isolated shipment

and/or network capacity)

Methodological framework

- Travel cost is the most discriminating cost component
- Crew constraints are the most complex
- Three-step process
 - Identify the shortest path for each block, under constraints
 - Guarantee feasibility wrt crew constraint with pre-preprocessing
 - Solve a MIP

Step 1: Constrained shortest path

$$\begin{aligned} & \operatorname{Min} \sum_{a \in A} \sum_{b \in B} c_{car} \cdot DistArc_a \cdot NumCar_b \cdot x_{ab} \\ & + \sum_{a \in A} (c_{train} \cdot DistArc_a + TrainStartCost) \cdot y_a \end{aligned} \\ & \text{subject to} \\ & \sum_{a \in A^+_{O_b}} x_{ab} = 1 \\ & \sum_{a \in A^-_{O_b}} x_{ab} = 0 \end{aligned} \qquad \forall b \in B \quad (2) \\ & \sum_{a \in A^-_{O_b}} x_{ab} = 0 \\ & \sum_{a \in A^-_{D_b}} x_{ab} = 1 \\ & \sum_{a \in A^-_{D_b}} x_{ab} = 1 \end{aligned} \qquad \forall b \in B \quad (3) \\ & \sum_{a \in A^+_{D_b}} x_{ab} = \sum_{a \in A^-_{D_b}} x_{ab} \qquad \forall n \in N \setminus \{D_b, O_b\}, \forall b \in B \quad (5) \\ & \sum_{b \in B} Ton_b \cdot x_{ab} \leq y_a \cdot Max Ton_a \qquad \forall a \in A \quad (6) \\ & \sum_{b \in B} Len_b \cdot x_{ab} \leq y_a \cdot Max Len_a \qquad \forall a \in A \quad (7) \\ & y_a \leq Max Num Trains_a \qquad \forall a \in A \quad (8) \\ & x_{ab} \leq y_a \qquad \forall a \in A, \forall b \in B \quad (9) \\ & x_{ab} \in \{0,1\}, y_a \in \mathbb{N} \qquad \forall a \in A, \forall b \in B \quad (10) \end{aligned}$$

Step 1: Constrained shortest path

Shipment and Train Path Generation

- Step 1: Resource constraint shortest path problem for shipments
 - Does not take care of crew segments
 - Find shortest crew segment covering for the paths if the shortest path is not on crew segments
- Step 2: Train Path Generation (preprocessing)
 - Assign one train per crew segment
 - It guarantees feasibility wrt crew constraints
 - Assign more trains to sequences of crew segments to increase flexibility
 - We duplicate trains to meet capacity constraints
 - Next, we decide which of these many trains will be actually operated.

Step 3: MIP

$$\begin{aligned} & \operatorname{Min} \sum_{t \in T} (TrainStartCost + TrainTravelCostPerMile \cdot TrainPathLength_{t}) \cdot z_{t} \\ & + \sum_{t \in T} \sum_{a \in A} CostPerWorkEvent \cdot w_{t}^{a} + \sum_{b \in B} \sum_{a \in A} BlockSwapCost_{a} \cdot u_{b}^{a} \\ & + \sum_{n \in N} TrainImbalancePenalty \cdot s_{n} + \sum_{i \in C} CrewImbalancePenalty \cdot c_{i} \\ & + \sum_{b \in B} (1 - k_{b}) \cdot MissedRailcarPenalty \cdot NumCar_{b} \end{aligned}$$
 subject to
$$\begin{aligned} & \sum_{\{t \in T: a \in I_{bt}\}} x_{bt}^{a} = k_{b} & \forall b \in B, \forall a \in R_{b} \end{aligned}$$
 (2)
$$\begin{aligned} & x_{bt}^{a} \leq y_{bt} & \forall b \in B, \forall t \in T, \forall a \in I_{bt} \\ & x_{bt}^{a} \leq z_{t} & \forall b \in B, \forall t \in T, \forall a \in I_{bt} \end{aligned}$$
 (3)
$$\end{aligned}$$

 $x_{bt}^{a} - x_{bt}^{N_{t}^{a}} \le w_{t}^{a}, \quad x_{bt}^{N_{t}^{a}} - x_{bt}^{a} \le w_{t}^{a} \qquad \forall b \in B, \forall t \in T, \forall a \in I_{bt} \setminus \{a_{t1}, a_{t|P_{t}|}\}$ (5)

 $\sum w_t^a \le maxNbWorkEvents_t$

 $\forall t \in T$

(6)

Mathematical Model (cont.)

$$\begin{aligned} x_{bt}^{a} - x_{bt}^{N_{b}^{a}} &\leq u_{b}^{a}, \quad x_{bt}^{N_{b}^{a}} - x_{bt}^{a} \leq u_{b}^{a} & \forall b \in B, \forall t \in T, \forall a \in I_{bt} \setminus \{a_{b1}, a_{b|R_{b}|}\} & (7) \\ \sum_{a \in R_{b}} u_{b}^{a} &\leq \max NbBlockSwaps_{b} & \forall b \in B & (8) \\ \sum_{t \in T: n = O_{t}} z_{t} - \sum_{t \in T: n = D_{t}} z_{t} &\leq s_{n} & \forall n \in N & (9) \\ \sum_{t \in T: n = D_{t}} z_{t} - \sum_{t \in T: n = O_{t}} z_{t} &\leq s_{n} & \forall n \in N & (10) \\ \sum_{t \in T} CrSeg_{t} \cdot z_{t} - \sum_{t \in T} OpCrSeg_{t} \cdot z_{t} &\leq c_{i} & \forall i \in C & (11) \\ \sum_{t \in T} OpCrSeg_{t} \cdot z_{t} - \sum_{t \in T} CrSeg_{t} \cdot z_{t} &\leq c_{i} & \forall t \in T, \forall b \in B & (13) \\ \sum_{b \in B} y_{bt} &\leq \max NbBlocksPerTrain & \forall t \in T, \forall a \in A & (14) \\ s_{n}, c_{i} &\in \mathbb{N} & \forall n \in N, \forall i \in C & (15) \end{aligned}$$

Mathematical Model

Mathematical Model (cont.)

$$x_{bt}^{a} - x_{bt}^{N_{b}^{a}} \leq u_{b}^{a} \quad x_{bt}^{N_{b}^{a}} - x_{bt}^{a} \leq u_{b}^{a} \quad \forall b \in B, \forall t \in T, \forall a \in I_{bt} \setminus \{u_{b} \mid a_{b} \mid B\}\} \quad (7)$$

$$\sum_{a \in R_{b}} u_{b}^{a} \leq \max NbBlockSwaps_{b} \quad \text{if block } b \text{ has a block swap after arc } a \text{ or not} \quad \text{first arc of block } b \quad \forall b \in B \quad (8)$$

$$\sum_{\{t \in T: n = O_{t}\}} z_{t} - \sum_{\{t \in T: n = O_{t}\}} z_{t} \leq s_{n} \quad \forall n \in N \quad (9)$$

$$\sum_{\{t \in T: n = D_{t}\}} CrSeg_{t} \cdot z_{t} - \sum_{t \in T} OpCrSeg_{t} \cdot z_{t} \leq c_{i} \quad \forall i \in C \quad (11)$$

$$\sum_{t \in T} OpCrSeg_{t} \cdot z_{t} - \sum_{t \in T} CrSeg_{t} \cdot z_{t} \leq c_{i} \quad \forall i \in C \quad (12)$$

$$\sum_{t \in T} OpCrSeg_{t} \cdot z_{t} - \sum_{t \in T} CrSeg_{t} \cdot z_{t} \leq c_{i} \quad \forall t \in T, \forall b \in B \quad (13)$$

$$\sum_{b \in B} y_{bt} \leq \max NbBlocksPerTrain \quad \forall b \in B, \forall t \in T, \forall a \in A \quad (14)$$

$$s_{n}, c_{i} \in \mathbb{N} \quad \forall n \in N, \forall i \in C \quad (15)$$

Data Sets: CSX - railroad company in the US

Data 1

- 134 arcs
- 94 nodes
- 239 shipments (1-12 arcs)
- 154 crew segments (1-4 arcs)

534 candidate trains

Data 2

- 294 arcs
- 221 nodes
- 369 shipments (1-17 arcs)
- 154 crew segments (1-7 arcs)

• 575 candidate trains

Results

Objective Function	Data	1	Data 2	
Component	Cost (\$)	%	Cost (\$)	%
Train Start Cost	23600	1.2	33600	1.1
Train Travel Cost	238692	12.6	267989	8.9
Railcar Travel Cost	1566012.38	82.5	219517.5	72.8
Work Event Cost	47600	2.6	73150	2.4
Block Swap Cost	4050	0.2	5860	0.2
Crew Imbalance Cost	7200	0.4	13800	0.5
Train Imbalance Cost	12000	0.6	4000	0.1
Missed Railcars Cost	0	0	420000	14.0
Total Cost	1899154.38	100	3008556.5	100

Findings

- Integrated problem can be solved on real instances
- Crew constraints are the most complex → processed first
- We exploit the cost structure → shortest paths followed by MIP

Ongoing Research

- Relax the strong relation with the cost structure
- E.g. combining shipment path generation algorithm with the shipment to train assignment
 - Multioptional shipment paths (e.g. k-shortest paths)
 - Online train generation (column generation)
- Include uncertainty in the model (robust optimization, recovery)
- Include a time dimension (scheduling)

