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Introduction

• What kind of behavior can be mathematically modeled?
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Introduction

Psychohistory
Branch of mathematics which deals with the reactions of human conglom-
erates to fixed social and economic stimuli. The necessary size of such a
conglomerate may be determined by Seldon’s First Theorem.

Encyclopedia Galactica, 116th Edition (1020 F.E.)
Encyclopedia Galactica Publishing Co., Terminus

Motivation: shorten the period of barbarism after
the Fall of the Galactic Empire

Asimov, I. (1951) Foundation, Gnome Press
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Here...

• Individual behavior (vs. aggregate behavior)

• Theory of behavior which is
• descriptive: how people behave and not how they should
• abstract: not too specific
• operational: can be used in practice for forecasting

• Type of behavior: choice
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Motivations
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Motivations

“It is our choices that show what we truly are, far more than
our abilities” Albus Dumbledore
“Liberty, taking the word in its concrete sense, consists in
the ability to choose.” Simone Weil (French philosopher,
1909-1943

Field : Type of behavior:
◮Marketing ◮Choice of a brand
◮Transportation ◮Choice of a transportation mode
◮Politics ◮Choice of a president
◮Management ◮Choice of a management policy
◮New technologies ◮Choice of investments
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Applications

Case studies

• Choice-lab marketing
• Context: B2B, data provider (financial, demographic, etc.)
• Objective: understand why clients quit

• Quebec energy
• Context: space and water heating in households
• Objective: importance of the type of household and price

• Transportation mode choice in the Netherlands
• Context: car vs rail in Nijmegen
• Objective: sensitivity to travel time and cost, inertia.
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Applications

• Swissmetro
• Context: new transportation technology
• Objective: demand pattern, pricing

• Residential telephone services
• Context: flat rate vs. measured
• Objective: offer the most appropriate service
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Importance

Daniel

L.

McFadden

1937–

• UC Berkeley 1963, MIT 1977, UC Berkeley 1991

• Laureate of The Bank of Sweden Prize in
Economic Sciences in Memory of Alfred Nobel
2000

• Owns a farm and vineyard in Napa Valley

• “Farm work clears the mind, and the vineyard is a
great place to prove theorems”
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Framework

Choice: outcome of a sequential decision-making process

• Definition of the choice problem: How do I get to EPFL?

• Generation of alternatives: car as driver, car as passenger, train

• Evaluation of the attributes of the alternatives: price, time,
flexibility, comfort

• Choice: decision rule

• Implementation: travel
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Framework

A choice theory defines

1. decision maker

2. alternatives

3. attributes of alternatives

4. decision rule
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Decision-maker

• Individual or a group of persons

• If group of persons, we ignore internal interactions

• Important to capture difference in tastes and decision-making
process

• Socio-economic characteristics: age, gender, income,
education, etc.
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Alternatives

• Environment: universal choice set (U)
• Individual n: choice set (Cn)

Choice set generation:

• Availability
• Awareness

Swait, J. (1984) Probabilistic Choice Set Formation in Transportation Demand Models

Ph.D. dissertation, Department of Civil Engineering, MIT, Cambridge, Ma.
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Alternatives

Continuous vs. discrete

Continuous choice set:

-

6

qBeer

qMilk

	
pBeerqBeer + pMilkqMilk = I

Cn

Discrete choice set:
Cn = { Car, Bus, Bike}
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Attributes

➜ cost
➜ travel time
➜ walking time
➜ comfort
➜ bus frequency
➜ etc.

✔ Generic vs. specific
✔ Quantitative vs. qualita-

tive
✔ Perception
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Decision rules

Neoclassical economic theory
Preference-indifference operator &

(i) reflexivity
a & a ∀a ∈ Cn

(ii) transitivity

a & b and b & c ⇒ a & c ∀a, b, c ∈ Cn

(iii) comparability
a & b or b & a ∀a, b ∈ Cn
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Decision rules

Neoclassical economic theory (ctd)

☞ Numerical function

∃ Un : Cn −→ R : a Un(a) such that

a & b ⇔ Un(a) ≥ Un(b) ∀a, b ∈ Cn

�

�

�

�
Utility
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Decision rules

• Utility is a latent concept

• It cannot be directly observed
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Example: continuous choice

Continuous choice set

• Q = {q1, . . . , qL} consumption bundle

• qi is the quantity of product i consumed

• Utility of the bundle:
U(q1, . . . , qL)

• Qa & Qb iff U(qa
1 , . . . , qa

L) ≥ U(qb
1, . . . , q

b
L)

• Budget constraint:
L
∑

i=1

piqi ≤ I.
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Example: continuous choice

Decision-maker solves the optimization problem

max
q∈RL

U(q1, . . . , qL)

subject to
L
∑

i=1

piqi = I.

Example with two products...
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Example: continuous choice

max
q1,q2

U = β0q
β1

1 q
β2

2

subject to
p1q1 + p2q2 = I.

Lagrangian of the problem:

L(q1, q2, λ) = β0q
β1

1 q
β2

2 + λ(I − p1q1 − p2q2).

Necessary optimality condition

∇L(q1, q2, λ) = 0
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Example: continuous choice

Necessary optimality conditions

β0β1q
β1−1
1 q

β2

2 − λp1 = 0

β0β2q
β1

1 q
β2−1
2 − λp2 = 0

p1q1 + p2q2 − I = 0.

We have
β0β1q

β1

1 q
β2

2 − λp1q1 = 0

β0β2q
β1

1 q
β2

2 − λp2q2 = 0

so that
λI = β0q

β1

1 q
β2

2 (β1 + β2)
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Example: continuous choice

Therefore

β0q
β1

1 q
β2

2 =
λI

(β1 + β2)

As β0β2q
β1

1 q
β2

2 = λp2q2, we obtain (assuming λ 6= 0)

q2 =
Iβ2

p2(β1 + β2)

Similarly, we obtain

q1 =
Iβ1

p1(β1 + β2)
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Example: continuous choice

q1 =
Iβ1

p1(β1 + β2)

q2 =
Iβ2

p2(β1 + β2)

Demand functions
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Discrete choice

• Similarities with Knapsack problem

• Calculus cannot be used anymore

U = U(q1, . . . , qL)

with

qi =

{

1 if product i is chosen
0 otherwise

and
∑

i

qi = 1.
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Discrete choice

• Do not work with demand functions anymore

• Work with utility functions

• U is the “global” utility

• Define Ui the utility associated with product i.

• It is a function of the attributes of the product (price, quality,
etc.)

• We say that product i is chosen if

Ui ≥ Uj ∀j.
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Example

Example: two transportation modes

U1 = −βt1 − γc1

U2 = −βt2 − γc2

with β, γ > 0

U1 ≥ U2 iff − βt1 − γc1 ≥ −βt2 − γc2

that is

−β

γ
t1 − c1 ≥ −β

γ
t2 − c2

or

c1 − c2 ≤ −β

γ
(t1 − t2)
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Example

Obvious cases:

• c1 ≥ c2 and t1 ≥ t2: 2 dominates 1.

• c2 ≥ c1 and t2 ≥ t1: 1 dominates 2.

• Trade-offs in over quadrants
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Example
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2 is chosen
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Example
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Assumptions

Decision rules
Neoclassical economic theory (ctd)
Decision-maker

✔ perfect discriminating ca-
pability

✔ full rationality
✔ permanent consistency

Analyst

✔ knowledge of all attributes
✔ perfect knowledge of& (or

Un(·))
✔ no measurement error

Introduction – p. 31/74



Assumptions

Uncertainty

Source of uncertainty?

☞ Decision-maker: stochastic decision rules
☞ Analyst: lack of information

☞ Bohr: “Nature is stochastic”
☞ Einstein: “God does not play

dice”
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Assumptions

Lack of information: random utility models
Manski 1973 The structure of Random Utility Models Theory and Decision 8:229–254

Sources of uncertainty:

☞ Unobserved attributes
☞ Unobserved taste variations
☞ Measurement errors
☞ Instrumental variables

For each individual n,
Uin = Vin + εin

Dependent variable is latent. Therefore, we prefer the model

P (i|Cn) = P [Uin = max
j∈Cn

Ujn] = P (Uin ≥ Ujn ∀j ∈ Cn)
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Example

Data :
Time Time Time Time

# auto transit Choice # auto transit Choice

1 52.9 4.4 T 11 99.1 8.4 T

2 4.1 28.5 T 12 18.5 84.0 C

3 4.1 86.9 C 13 82.0 38.0 C

4 56.2 31.6 T 14 8.6 1.6 T

5 51.8 20.2 T 15 22.5 74.1 C

6 0.2 91.2 C 16 51.4 83.8 C

7 27.6 79.7 C 17 81.0 19.2 T

8 89.9 2.2 T 18 51.0 85.0 C

9 41.5 24.5 T 19 62.2 90.1 C

10 95.0 43.5 T 20 95.1 22.2 T

21 41.6 91.5 C
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Error term

The distribution
Assumption: εT and εC are the maximum of many r.v. capturing
unobservable attributes (e.g. mood, experience), measurement and
specification errors.
Gumbel theorem: the maximum of many i.i.d. random variables
approximately follows an Extreme Value distribution.

εC ∼ EV(0, µ)
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Error term

The distribution

EV(η, µ), with µ > 0 :

f(t) = µe−µ(t−η)e−e−µ(t−η)

If ε ∼ EV(η, µ), then

P (c ≥ ε) = F (c) =

∫ c

−∞

f(t)dt

= e−e−µ(c−η)

Introduction – p. 36/74



Error term

0

0.05

0.1

0.15

0.2

0.25
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0.35

0.4
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Gumbel PDF µ = 0, σ = 1
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Error term

0

0.1

0.2
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0.5
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Error term

If
ε ∼ EV(η, µ)

then

E[ε] = η +
γ

µ
and Var[ε] =

π2

6µ2

where γ is Euler’s constant

γ = lim
k→∞

k
∑

i=1

1

i
− ln k

= −
∫ ∞

0

e−x lnxdx

≈ 0.5772
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Error term

The distribution

P (C|{C, T}) = P (ε ≤ VC − VT ) = P (ε ≤ β1(TC − TT ) − β0)

where ε = εT − εC .

εC ∼ EV(0, µ)

εT ∼ EV(0, µ)

ε ∼ Logistic(0, µ)

Logit Model
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Error term

The distribution
For the Logistic(0,µ), we have

P (c ≥ ε) = F (c) =
1

1 + e−µc

P (C|{C, T}) = P (ε ≤ VC − VT )

= F (VC − VT )

=
1

1 + e−µ(VC−VT )

=
eµVC

eµVC + eµVT
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Error term

P (C|{C, T}) =
eµVC

eµVC + eµVT

Binary Logistic Unit Model or Binary Logit Model
Normalize µ = 1
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Back to the example

Let’s assume that β0 = 0.5 and β1 = −0.1
Let’s consider the first observation:

• TC = 52.9

• TT = 4.4

• Choice = transit

What’s the probability given by the model that this individual indeed
chooses transit?

VC = β1TC = −5.29

VT = β1TT + β0 = 0.06
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Back to the example

P (transit) =
eVT

eVT + eVC

P (transit) =
e0.06

e0.06 + e−5.29
∼= 1

The model almost perfectly predicts this observation
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Back to the example

Let’s assume again that β0 = 0.5 and β1 = −0.1
Let’s consider the second observation:

• TC = 4.1

• TT = 28.5

• Choice = transit

What’s the probability given by the model that this individual indeed
chooses transit?

VC = β1TC = −0.41

VT = β1TT + β0 = −2.35
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Back to the example

P (transit) =
eVT

eVT + eVC

P (transit) =
e−2.35

e−2.35 + e−0.41
∼= 0.13

The model does not correctly predict this observation
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Back to the example

The probability that the model reproduces both observations is

P1(transit)P2(transit) = 0.13

The probability that the model reproduces all observations is

P1(transit)P2(transit) . . . P21(auto) = 4.62 10−4

In general

L∗ =
∏

n

(Pn(auto)yauto,nPn(transit)ytransit,n)

where yj,n is 1 if individual n has chosen alternative j, 0 otherwise
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Back to the example

L∗ is called the likelihood of the sample for a given model.
It is a probability.
We report this value for some values of β0 and β1

β0 β1 L∗

0 0 4.57 10−07

0 -1 1.97 10−30

0 -0.1 4.1 10−04

0.5 -0.1 4.62 10−04
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Back to the example

-0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 -2-1.5-1
-0.500.511.522.5

0
0.0002
0.0004
0.0006
0.0008

0.001
0.0012
0.0014
0.0016
0.0018

0.002
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Maximum likelihood estimation

max
β

∏

n

(Pn(auto)yauto,nPn(transit)ytransit,n)

Alternatively, we prefer to maximize the log-likelihood

max
β

ln
∏

n

(Pn(auto)yauto,nPn(transit)ytransit,n)

max
β

∑

n

ln
(

yauto,nPn(auto) + ytransit,nPn(transit)
)

Introduction – p. 50/74



Maximum likelihood estimation

-0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 -2-1.5-1
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-20
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Maximum likelihood estimation

In general, the likelihood of a sample composed of N observations
is

L∗(β1, . . . , βK) =

N
∏

n=1

Pn(1)y1nPn(2)y2n

where y1n is 1 if individual n has chosen alternative 1, and 0
otherwise. We also have

Pn(2) = 1 − Pn(1) and y2n = 1 − y1n
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Maximum likelihood estimation

The log-likelihood is more convenient:

L(β1, . . . , βK) =
N
∑

n=1

(y1n log Pn(1) + y2n log Pn(2))

Problem to solve
max
β∈RK

L(β)
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Logit model

Binary logit:

P (i|{i, j}) =
eVi

eVi + eVj

Logit: assumes that the error terms are i.i.d. EV

P (i|Cn = {1, 2, . . . , i, . . . , J}) =
eVi

∑

j∈Cn
eVj

Property:

• If the Vi are linear-in-parameter

• the likelihood function for the logit model is globally concave.

• Other choice models do no have this nice property
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Example

Transportation mode choice:

Vcar = βCcostcar + βT timecar

Vbus = βCcostbus + βT timebus

Vbike = βCcostbike + βT timebike

• βtime can be different depending on the choice context

• Example: trip purpose

Vcar = βCcostcar + βb
T timecarδ(business) + βs

T timecarδ(shopping
Vbus = βCcostbus + βb

T timebusδ(business) + βs
T timecarδ(shopping

Vbike = βCcostbike + βb
T timebikeδ(business) + βs

T timecarδ(shopping
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Make it more complex: mixtures

• βT is distributed in the population

• We cannot characterize the segmentation

• Assume a distribution, e.g. normal

βT ∼ N(β̄T , σ2
T )

• If βT were known, we would have

P (car|βT , Cn) =
eVcar

∑

j∈Cn
Vj

• But βT is distributed. Therefore,

P (car|Cn) =

∫

βT

P (car|βT , Cn)f(βT )dβT
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Mixtures

In statistics, a mixture probability distribution function is a convex
combination of other probability distribution functions.
If f(ε, θ) is a distribution function, and if w(θ) is a non negative
function such that

∫

θ

w(θ)dθ = 1

then

g(ε) =

∫

θ

w(θ)f(ε, θ)dθ

is also a distribution function. We say that g is a w-mixture of f .
If f is a logit model, g is a continuous w-mixture of logit
If f is a MEV model, g is a continuous w-mixture of MEV
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Mixtures

Discrete mixtures are also possible. If wi, i = 1, . . . , n are non
negative weights such that

n
∑

i=1

wi = 1

then

g(ε) =

n
∑

i=1

wif(ε, θi)

is also a distribution function where θi, i = 1, . . . , n are parameters.
We say that g is a discrete w-mixture of f .
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Example: discrete mixture of normal distributions

0

0.5

1

1.5

2

2.5

4 5 6 7 8 9 10 11

N(5,0.16)
N(8,1)

0.6 N(5,0.16) + 0.4 N(8,1)
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Example: discrete mixture of binary logit models

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
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P(1|s=1,x)
P(1|s=2,x)

0. 4 P(1|s=1,x) + 0.6 P(1|s=2,x)

Introduction – p. 60/74



Simulation

P (i) =

∫

ξ

Λ(i|ξ)f(ξ)dξ

No closed form formula

• Randomly draw numbers such that their frequency matches the
density f(ξ)

• Let ξ1,. . . ,ξR be these numbers

• The choice model can be approximated by

P (i) ≈ P̃ (i) =
1

R

R
∑

r=1

Λ(i|ξr), as

lim
R→∞

1

R

R
∑

r=1

Λ(i|ξr) =

∫

ξ

Λ(i|ξ)f(ξ)dξ
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Simulation

P (i) ≈ P̃ (i) =
1

R

R
∑

r=1

Λ(i|ξr).

The kernel is a logit model, easy to compute.

Λ(i|ξr) =
eV1n+ξr

eV1n+ξr + eV2n+ξr + eV3n

Therefore, it amounts to generating the appropriate draws.
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Simulation: uniform distribution

• Almost all programming languages provide generators for a
uniform U(0, 1)

• If r is a draw from a U(0, 1), then

s = (b − a)r + a

is a draw from a U(a, b)
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Simulation: standard normal

• If r1 and r2 are independent draws from U(0, 1), then

s1 =
√
−2 ln r1 sin(2πr2)

s2 =
√
−2 ln r1 cos(2πr2)

are independent draws from N(0, 1)
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Simulation: standard normal
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Simulation: standard normal
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Gaussian PDF with unit variance and zero mean

scaled bin frequency
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Simulation: standard normal
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Simulation: standard normal
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Simulation: standard normal
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Introduction – p. 69/74



Maximum simulated likelihood

max
θ

L(θ) =

N
∑

n=1





J
∑

j=1

yjn ln P̃ (j; θ)



 =

N
∑

n=1





J
∑

j=1

yjn ln
1

R

R
∑

r=1

Λ(i|ξr)





where yjn = 1 if ind. n has chosen alt. j, 0 otherwise.
Vector of parameters θ contains:

• usual (fixed) parameters of the choice model

• parameters of the density of the random parameters

• For instance, if βj ∼ N(µj , σ
2
j ), µj and σj are parameters to be

estimated
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Maximum simulated likelihood

Warning:

• P̃ (j; θ) is an unbiased estimator of P (j; θ)

E[P̃n(j; θ)] = P (j; θ)

• ln P̃ (j; θ) is not an unbiased estimator of lnP (j; θ)

lnE[P̃ (j; θ] 6= E[ln P̃ (j; θ)]

• Under some conditions, it is a consistent (asymptotically
unbiased) estimator, so that many draws are necessary.
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Maximum simulated likelihood

In practice:

• Generate the draws once for all.

• The function to maximize has a closed form

max
θ

L(θ) =

N
∑

n=1





J
∑

j=1

yjn ln

(

1

R

R
∑

r=1

Λ(j|ξr; θ)

)





• The value of R can be adjusted during the algorithm: Bastin et
al.
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Summary

• Behavioral theory based on utility maximization

• Operational models derived from random utility

• Simplest model: the logit model

• Estimation of the parameters: maximum likelihood

• Maximize a globally concave nonlinear differentiable function

• With other models, same thing without concavity

• Advanced models: mixtures

• Rely on simulation

• Time consuming
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Short course

Organized at EPFL, Lausanne, March 2011

M. Ben Akiva D. McFadden M. Bierlaire D. Bolduc

http://transp-or.epfl.ch/dca
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