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Transport and Mobility Laboratory

• Transportation research
• Airlines, ports, buses, car traffic, land-use, etc.

• Operations research
• Nonlinear optimization, column-generation, simulation,

Markov chains, etc.

• Discrete choice models
• Multivariate Extreme Value models, mixtures models, latent

variables, Biogeme, etc.

transp-or.epfl.ch
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Collaborators

• 5 research associates

• 10 PhD students

On this research:

• Jingmin Chen, PhD student.

• Gunnar Flötteröd, postdoc.
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Outline

• Smartphone data

• Route choice: the chosen route

• Route choice: the non chosen routes
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Nokia data collection campaign
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Nokia data collection campaign

• Funding source: Nokia Research Center (NRC) at EPFL.

• Participants: About 185.

• Since: September 2009.

• Phone: Nokia N95.

• Collaborators: NRC Lausanne, IDIAP (Switzerland).
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Recruitment

snow ball sampling

root

friend

family friend

family friend
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Participants

• About 185 participants.

• Mostly from Lausanne area.

• ∼ 1/3 females.

• < 1/4 students.

From smartphone data to route choice modeling – p. 9/58



Software design

Phone software (EPFLSCOPE)

• written in python Symbian S60;

• starts with the operating system, runs in backend;

• cannot be turned off by users;

• records data constantly;

• uploads data automatically to DB A via wireless network (WIFI,
3G), every 2 hours.

Databases

• are administrated by Nokia;

• a remote database (DB A) with data access API (httprequest,
JSON format);

• another geographical database (DB B) copies data from DB A
with ∼ 12 hours lag (SQL access).
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Energy performance

The original software was developed by Nokia.

• With GPS on, one fully charged battery lasts less than 4 hours.

The energy performance was improved by TRANSP-OR, IDIAP and
NRC Lausanne.

• Turn off GPS if stationary.

• Determines stationary/moving: GPS, known WLAN, cell ID,
accelerometer.

• One fully charged battery can last ∼ 10 hours.
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Privacy and security

• Data is owned by participants. They can delete their data from
DB A.

• The campaign is permitted and controlled by an ethical
committee.

• Nokia and authorized research partners (in CH) get access to
the data.

It took ONE YEAR for EPFL to get data access (although data had
already been in Nokia’s databases).
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Data volume

∼ 150k-entries/100MB of data per user per month

Number of GPS points 11,531,652
Number of calls 247,448
Duration of calls 6,903h
Number of sms 179,358

Number of video made 3,890
Number of pictures taken 54,537

Number of unique BT 543,517
Number of unique WIFI 572,910

Number of unique cell towers (63 countries) 100,505
Number of unique cell towers (CH) 28,945

Number of acceleration samples 1,344,198
Number of application events captures 8,280,554

Number of phone book entries 115,134
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Calendar: number of entries

0 50 100 150 200
user (id)

0

100

200

300

400

500

600

700

n
u
m

b
e
r 

o
f 

ca
le

n
d
a
r 

e
n
tr

ie
s

0 100 200 300 400 500 600 700
number of entries

0

20

40

60

80

100

120

140

n
u
m

b
e
r 

o
f 

u
se

rs

From smartphone data to route choice modeling – p. 14/58



Media play
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Number of Bluetooth devices
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Mobility patterns: car
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Mobility patterns: train
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Route choice: the chosen route

• Focus on GPS data from
smartphone

• Objective: reconstruct actual
paths

From smartphone data to route choice modeling – p. 19/58



Issues
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Issues
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Issues

• Low data collection rate to save battery (every 10 seconds)

• Inaccuracy due to technological constraints

• Smartphone carried in bags, pockets: weaker signal

• Map matching algorithms do not work with this data
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Context

• Network: G = (N,A)

• Node coordinates: xn = {lat, lon}

• Arc geometry:
La : [0, 1] → R

2.

Example: straight line

La (ℓ) = (1− ℓ)xu + ℓxd.

• Model for the movement of the mobile phone:

x = S(x−, t−, t, p)

• Ideally a traffic simulator
• Simpler models are used in practice
• Random variable with density fx(x|x

−, t−, t, p)
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Data

One measurement: ĝ =
(
t̂, x̂, σ̂x, v̂, σ̂v, ĥ

)
,

• t̂, a time stamp ;

• x̂ = (x̂lat, x̂lon), a pair of coordinates;

• σ̂x, the standard deviation of the horizontal error in the location
measurement;

• v̂, a speed measurement (km/h) and,

• σ̂v, the standard deviation of the error in that measurement;

• ĥ, a heading measurement, that is the angle to the north
direction, from 0 to 359, clockwise.

Sequence: (ĝ1, . . . , ĝT )
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Measurement equations

Objective (derivation in the appendix):

• Given a path p

• Given a sequence (ĝ1, . . . , ĝT )

• What is the likelihood that the sequence has been generated by
a smartphone moving along path p?

• Note: different approach from map matching, which is
essentially a projection procedure.

• We focus on the position only

• We derive
Pr(x̂1, . . . , x̂T |p),

• ... recursively

Pr(x̂1, . . . , x̂T |p) = Pr(x̂T |x̂1, . . . , x̂T−1, p) Pr(x̂1, . . . , x̂T−1|p).
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Case study: true path
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Case study: path with a deviation (1)
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Case study: path with a deviation (2)
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Case study: log likelihood from measurement equations

True path -11.3
Deviation 1 -12.9
Deviation 2 -13.2

• Results are consistent with intuition
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Route choice: the non chosen routes

• Choice model: Pn(i|Cn)

• Route choice: what is Cn?

• Many “behaviorally motivated” heuristics proposed in the
literature.

• Most of the time, the chosen route is not included.

• Frejinger, Bierlaire and Ben-Akiva (2009)
propose an econometric approach.

• Idea:

• Assumption: all paths connecting the OD pair are relevant.
• Issue: enumeration is prohibitive.
• Solution: sampling of alternatives.
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Sampling of alternatives

• Sample Cn with replacement from C according to {q(i)}i∈C

• Add the chosen alternative

• kin is the number of times alternative i is contained in Cn

• Correct for sampling when estimating logit model

P (i|Cn) =
e
µVin+ln

(

kin
b(i)

)

∑
j∈Cn

e
µVjn+ln

(

kjn

b(j)

)

where {b(i)}i∈C is such that q(i) = b(i)/
∑

j∈C
b(j)

Objective: sample paths according to pre-specified {b(i)}i∈C
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Using Markov Chains

• Finite state space

• Discrete time k = 0, 1, . . .

• At time k, process is in state ik

• p(i, j) is one-step probability to go from state i to state j

• Process has a unique stationary distribution if
• every state eventually reaches every other state
• there is at least one state i with p(i, i) > 0

Objective: build MC of routes with stationary distribution {q(i)}i∈C
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Metropolis-Hastings algorithm

• Given

• a finite state space,
• positive weights {b(i)}i,
• and irreducible proposal transition distribution q(i, j),

• the Metropolis-Hastings algorithm generates a Markov chain
that converges to

q(i) = b(i)/
∑

j

b(j).
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Metropolis-Hastings algorithm

1. Set iteration counter k = 0

2. Select arbitrary initial state ik

3. Repeat beyond stationarity

(a) Draw candidate state j from {q(ik, j)}j

(b) Compute acceptance probability

α(ik, j) = min

(
b(j)q(j, ik)

b(ik)q(ik, j)
, 1

)

(c) With probability α(ik, j), let ik+1 = j; else, let ik+1 = ik

(d) Increase k by one
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Using MH for path sampling

• State space comprises C

• Weights b(i) favor plausible paths (importance sampling)

• Typically, paths with length close to the shortest path have high
probability to be sampled

• Transition distribution q(i, j) creates local path modifications

• too little variability: slow convergence
• too much variability: random search
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State space

• a state i = (Γ, a, b, c) consists of

• a path Γ

• three node indices a < b < c within that path

• node indices simplify computation of transition probabilities
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Proposal transition distribution

• SHUFFLE operation

• Re-sample (uniformly) a < b < c within path Γ

• SPLICE operation

• Sample a node v “near” the path segment Γ(a, c)
• Connect Γ(a) to v

• Connect v to Γ(c)

• Let new b point at v, update c

• Overall transition: randomly select one procedure
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Proposal transition distribution

A state (Γ, a, b, c)

A
B C

D

E

origin destination

a = 2 b = 3

c = 4
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Proposal transition distribution

SPLICE: a new node G is sampled
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G
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Proposal transition distribution

SPLICE: G is connected to the path
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Proposal transition distribution

SPLICE: the node indices are updated
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Proposal transition distribution

SPLICE: we obtain the new state
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Path generation algorithm

• A great deal of technical difficulties have to be addressed

• Implementation in Java

• Runs fast on real networks
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Simple example
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Simple example

• Target weights:
b(i) = exp[−µδ(Γ)]

where δ(Γ) is the length of path Γ.

• Note: µ = 0 means equal probability.
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Scatter plots
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Tel-Aviv example
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Tel-Aviv: length distribution
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Conclusion

• Route choice modeling is difficult.

• Data: smartphones

• Identify the chosen route
• Deal with inaccuracy and low rate
• Probabilistic map matching

• Identify the non chosen routes
• Sampling of paths
• Markov Chain Monte-Carlo method
• The devil is in the details...
• but it works!
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Appendix

• Derivation of the measurement equation for the probabilistic
map matching.
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Recursion: first step

Pr(x̂1|p) =

∫

x1∈p

Pr(x̂1|x1, p) Pr(x1|p)dx1,

• integral spans all locations x1 on path p

• no prior information on x1

Pr(x1|p) = 1/Lp

• a smarter way would be to assign more probability in the
beginning of the path

• measurement error of the device:

Pr(x̂1|x1, p) = Pr(x̂1|x1)
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Measurement error of the device

• Assume that latitudinal and longitudinal errors are i.i.d. normal
with variance σ2

• Measurement error is Rayleigh

• σ2 unknown, estimate:

σ̂2 = σ2
network + (σ̂x

1 )
2

where
• σ2

network: network coding errors

• (σ̂x
1 )

2: GPS errors.

Pr(x̂1|x1) = exp

(
−
‖x̂1 − x1‖

2

2

2σ̂2

)
.
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Recursion: first step

Pr(x̂1|p) =
1

Lp

∫

x1

exp

(
−
‖x̂1 − x1‖

2

2

2σ̂2

)
dx1.

• Integral may be cumbersome for long paths

• Can be simplified using the concept of Domain of Data
Relevance

• See Bierlaire & Frejinger (2008) and Bierlaire, Chen and
Newman (2010)
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Recursion: second step

Pr(x̂1, x̂2|p) = Pr(x̂2|x̂1, p) Pr(x̂1|p),

Focus now on

Pr(x̂2|x̂1, p) =

∫

x2∈p

Pr(x̂2|x2, x̂1, p) Pr(x2|x̂1, p)dx2.

• first term = Pr(x̂2|x2) measurement error, same as before

• second term: predicts the position at time t̂2 of the traveler

Pr(x2|x̂1, p) =

∫

x1∈p

Pr(x2|x1, x̂1, p) Pr(x1|x̂1, p)dx1.
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Position predictor

Pr(x2|x̂1, p) =

∫

x1∈p

Pr(x2|x1, x̂1, p) Pr(x1|x̂1, p)dx1.

• First term: movement model

Pr(x2|x1, x̂1, p) = fx(x2|x1, t̂1, t̂2, p),

• Second term: Bayes rule

Pr(x1|x̂1, p) =
Pr(x̂1|x1, p) Pr(x1|p)∫

x1
Pr(x̂1|x1, p) Pr(x1|p)dx1

.

simplifies to

Pr(x1|x̂1, p) =
Pr(x̂1|x1, p)∫

x1
Pr(x̂1|x1, p)dx1

From smartphone data to route choice modeling – p. 57/58



Measurement equations

• Step k of the recursion based on same principles

• but requires some technical simplifications

Pr(xk−1|x̂k−1, p) =
Pr(x̂k−1|xk−1, p)∫
x
Pr(x̂k−1|x, p)dx

.

• Integrals can be simplified using the DDR
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