Models and algorithms for integrated airline schedule planning and revenue management

Bilge Atasoy, Matteo Salani, Michel Bierlaire

TRISTAN VIII

June 14, 2013

Introduction	Demand model	Heuristic	Results	Transformation	Conclusions
Motivat	ion				

- Flexibility in decision support tools,
- demand responsive transportation systems
 - ... through ...
- a better understanding of demand behavior,
- integration of explicit supply-demand interactions,
- endogenous demand variables that can be controlled by the optimization models,
- considering demand early in the planning phase.

Related Literature

- Supply-demand interactions in air transport planning
 - Lohatepanont and Barnhart (2004)
 - Wang, Shebalov and Klabjan (2012)
- Exogenous demand models; iterative supply-demand models
 - Jacobs, Smith and Johnson (2008)
 - Dumas, Aithnard and Soumis (2009)
- Endogenous demand models explicit integration
 - Airlines: Schön (2008)
 - Railways: Cordone and Redaelli (2011)
 - Revenue management: Talluri and van Ryzin (2004)

Introduction	Demand model	Heuristic	Results	Transformation	Conclusions
Itinerar	y choice mod	del			

- Market segments, s, defined by the class and each OD pair
- Itinerary choice among the set of alternatives, I_s , for each segment s
- For each itinerary $i \in I_s$ the utility is defined by:

$$V_{i} = ASC_{i} + \beta_{p} \cdot ln(p_{i}) + \beta_{time} \cdot time_{i} + \beta_{morning} \cdot morning_{i}$$
$$V_{i} = V_{i}(p_{i}, z_{i}, \beta)$$

- ASC_i : alternative specific constant
- p is the only policy variable and included as log
- p and time are interacted with non-stop/stop
- $\operatorname{morning}$ is 1 if the itinerary is a morning itinerary

Introduction	Demand model	Heuristic	Results	Transformation	Conclusions
Estimat	cion				

- **Revealed preferences (RP) data:** Booking data from a major European airline
 - Lack of variability
 - Price inelastic demand
- RP data is combined with a stated preferences (SP) data
- Time, cost and morning parameters are **fixed** to be the same for the two datasets.
- A scale parameter is introduced for SP to capture the differences in variance.

Introduction	Demand model	Heuristic	Results	Transformation	Conclusions
Market	shares				

Market share and demand for itinerary *i* in market segment *s*:

$$ms_i = \frac{\exp(V_i(p_i, z_i, \beta))}{\sum_{j \in I_s} \exp(V_j(p_j, z_j, \beta))} \Rightarrow D_s ms_i$$

Consider a new variable

$$\upsilon_{s} = \frac{1}{\sum_{j \in I_{s}} \exp(V_{j})}$$

$$ms_{i} = \upsilon_{s} \exp(\beta \ln(p_{i}) + c_{i})$$

$$\sum_{i \in I_{s}} ms_{i} = 1$$

$$\upsilon_{s} \ge 0$$

Integrated airline scheduling, fleeting and pricing

Decision variables:

- $x_{k,f}$: binary, assignment of aircraft k to flight f
- $\pi_{k,f}^h$: allocated seats for class h on flight f aircraft k
- p_i: price of itinerary i
- *ms_i*: market share of itinerary *i*

No-revenue itineraries $I'_s \in I_s$ for segment s, no control of airline.

NSP-OR

Integrated model - Scheduling & fleeting

$$\begin{aligned} \max \sum_{h \in H} \sum_{s \in S^{h}} D_{s} \sum_{i \in (I_{s} \setminus I_{s}^{i})} \operatorname{ms}_{i} p_{i} - \sum_{\substack{k \in K \\ f \in F}} C_{k,f} x_{k,f} : revenue - cost \end{aligned} \tag{1}$$

$$\text{s.t.} \sum_{k \in K} x_{k,f} = 1: \text{ mandatory flights} & \forall f \in F^{M} \quad (2) \\ \sum_{k \in K} x_{k,f} \leq 1: \text{ optional flights} & \forall f \in F^{O} \quad (3) \\ y_{k,a,t^{-}} + \sum_{f \in \operatorname{In}(k,a,t)} x_{k,f} = y_{k,a,t^{+}} + \sum_{f \in \operatorname{Out}(k,a,t)} x_{k,f}: \text{ flow conservation} & \forall [k,a,t] \in N \quad (4) \\ \sum_{a \in A} y_{k,a,\min E_{a}^{-}} + \sum_{f \in CT} x_{k,f} \leq R_{k}: \text{ fleet size} & \forall k \in K \quad (5) \\ y_{k,a,\min E_{a}^{-}} = y_{k,a,\max E_{a}^{+}}: \text{ cyclic schedule} & \forall k \in K, a \in A \quad (6) \\ \sum_{h \in H} \pi_{k,f}^{h} \leq Q_{k} x_{k,f}: \text{ seat capacity} & \forall f \in F, k \in K \quad (7) \\ x_{k,f} \in \{0,1\} & \forall k \in K, f \in F \quad (8) \\ y_{k,a,t} \geq 0 & \forall [k,a,t] \in N \quad (9) \end{aligned}$$

Integrated model - Revenue management - Pricing

$$\begin{split} \sum_{s \in S^{h}} D_{s} \sum_{i \in (I_{s} \setminus I_{s}^{\prime})} \delta_{i,f} \operatorname{ms}_{i} &\leq \sum_{k \in K} \pi_{k,f}^{h}: \ demand - \ capacity & \forall h \in H, f \in F \quad (10) \\ \\ \sum_{i \in I_{s}} \operatorname{ms}_{i} &= 1: \ market \ coverage & \forall h \in H, s \in S^{h} \quad (11) \\ \\ \operatorname{ms}_{i} &\leq \upsilon_{s} \exp(V_{i}(p_{i}, z_{i}; \beta)): \ market \ share & \forall h \in H, s \in S^{h}, i \in (I_{s} \setminus I_{s}^{\prime}) \quad (12) \\ \\ \operatorname{ms}_{j} &= \upsilon_{s} \exp(V_{j}(p_{j}, z_{j}; \beta)): \ market \ share - \ competitors & \forall h \in H, s \in S^{h}, j \in I_{s}^{\prime} \quad (13) \\ \\ \pi_{k,f}^{h} &\geq 0 & \forall h \in H, s \in S^{h}, i \in (I_{s} \setminus I_{s}^{\prime}) \quad (15) \\ \\ \operatorname{ms}_{i} &\geq 0 & \forall h \in H, s \in S^{h}, i \in I_{s} \quad (16) \\ \\ \upsilon_{s} &\geq 0 & \forall h \in H, s \in S^{h} \quad (17) \end{split}$$

Introduction	Demand model	Heuristic	Results	Transformation	Conclusions
Heuristi	c method				
riculisti	c methou				

- Mixed Integer Non-convex Problem
- A heuristic procedure based on two subproblems:
 - $\bullet~\mathrm{FAM}^{\textit{LS}}$: price-inelastic schedule planning model $\Rightarrow~\mathsf{MILP}$
 - Prices fixed
 - Optimizes the schedule design and fleet assignment
 - REV^{LS} : Revenue management with fixed capacity \Rightarrow NLP
 - Schedule design and fleet assignment fixed
 - Solves pricing, seat allocation
 - Local search based on spill (lost passengers)
 - Price sampling
 - Fixing a subset of FAs & VNS

Data and results

25 data instances are generated from ROADEF 2009 dataset. Integrated model is solved...

- with BONMIN solver
- \bullet as a sequential approach 1^{st} iteration of the heuristic
- with the heuristic
- Up to around 35 flights 3 aircraft types
 - BONMIN works quite fine.
 - Integrated model improves the sequential approach by 2% on the average
 - The average demand and capacity of the aircraft types at hand are key factors
 - Heuristic finds the solutions at all instances

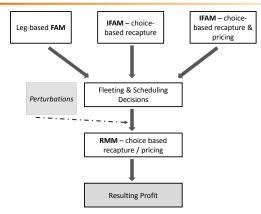
Transformation

Conclusions

Data and results

no	airports	flights	flights per route	demand per flight	fleet composition	
20	3	33	8.25	71.90	4	85-70-50-35
21	3	46	7.67	86.85	5	128-124-107-100-85
22	7	48	2.29	101.94	4	124-107-100-85
23	3	61	15.25	69.15	4	117-85-50-37
24	8	77	2.08	67.84	4	117-85-50-37
25	8	97	3.46	90.84	5	164-117-100-85-50

	BONMIN Integrated model max 24 hours		ated model approach (SA)			Local search he Average over 5 re max 2 hou	plications		
	Profit	Time <i>(sec)</i>	Profit	% deviation from BONMIN	Time (sec)	Profit	%deviation from BONMIN	%impr. over SA	Time <i>(sec)</i>
20	155,772	1,429	154,322	-0.93%	5	155,772	0.00%	0.94%	316
21	303,726	84,872	303,469	-0.08%	28	307,182	1.14%	1.22%	1,819
22	161,197	18,440	163,324	1.32%	11	163,756	1.59%	0.26%	235
23	284,269	971	278,942	-1.87%	51	282,863	-0.49%	1.41%	1,438
24	155,457	79,989	158,106	1.70%	51	165,765	6.63%	4.84%	2,305
25	409,496	85,718	410,632	0.28%	4,278	411,109	0.39%	0.12%	6,832

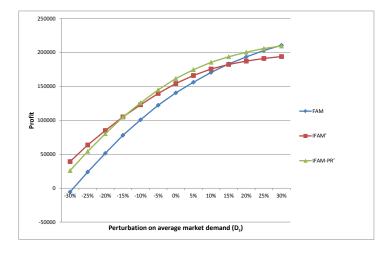


Transformation

Conclusions

Sensitivity Analysis

Joint work with Prof. Cynthia Barnhart


Sensitivity to demand fluctuations

- Total market segment demand is assumed to be known
- Fluctuations in reality
- Average demand is perturbed in a range [-30%, +30%]
- For each average demand 500 simulations with Poisson

Sensitivity to demand fluctuations

77 flights 4 aircraft types - heuristic solution

Non-convexity

How to deal with non-convexity ?...

In the literature: inverse-demand function piecewise linear approximation

A general utility specification...

Transformation of the logit model

$$ms_i = rac{\exp(V_i)}{\sum_{j \in I_s} \exp(V_j)},$$

$$V_i = \beta \ln (p_i) + c_i$$

A logarithmic transformation:

$$ms_i = v_s \exp(\beta \ln (p_i) + c_i)$$
$$ms'_i = v'_s + \beta p'_i + c_i$$

$$\mathrm{ms}'_{i} \Rightarrow \ln(\mathrm{ms}_{i}), \ \upsilon'_{s} \Rightarrow \ln(\upsilon_{s}), \ p'_{i} \Rightarrow \ln(p_{i}).$$

Transformation of the logit model

$$ms_i = rac{\exp(V_i)}{\sum_{j \in I_s} \exp(V_j)},$$

$$V_i = \beta \ln (p_i) + c_i$$

A logarithmic transformation:

$$ms_{i} = v_{s} \exp(\beta \ln (p_{i}) + c_{i})$$
$$ms_{i}^{'} = v_{s}^{'} + \beta p_{i}^{'} + c_{i}$$

 $ms'_i \Rightarrow ln(ms_i), v'_s \Rightarrow ln(v_s), p'_i \Rightarrow ln(p_i).$ This is applicable to any utility specification.

Introduction	Demand model	Heuristic	Results	Transformation	Conclusions
But					

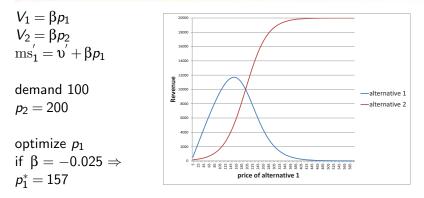
- We need both ms_i and ms'_i
 - ... cannot simply include $ms_i = \exp(ms'_i)$

Introduction	Demand model	Heuristic	Results	Transformation	Conclusions
But					

- We need both ms_i and ms'_i
 - ... cannot simply include $ms_i = \exp(ms'_i)$
- We can penalize the deviation $M(ms_i - exp(ms'_i))^2$

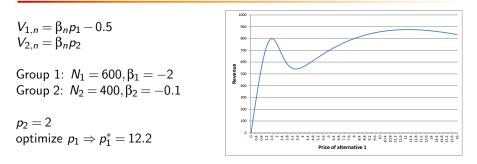
Introduction	Demand model	Heuristic	Results	Transformation	Conclusions
But					

ullet We need both ms_i and ms_i'


... cannot simply include $ms_i = \exp(ms'_i)$

- We can penalize the deviation $M(ms_i - exp(ms'_i))^2$
- The revenue in the objective function
 - ... can use similar tricks

Illustrative Example I - Aggregate


 $\begin{array}{rl} \max & 100 m s_1 p_1 \Leftrightarrow \max & \exp\left(\mathrm{ms}_1^{'} + \ln\left(p1\right)\right) \Leftrightarrow \max & \mathrm{ms}_1^{'} + \ln\left(p1\right) \\ \text{Transformation: } \max & \mathrm{ms}_1^{'} + \ln\left(p1\right) - M(\mathrm{ms}_1 - \exp\left(\mathrm{ms}_1^{'}\right))^2 \end{array}$

Results

Illustrative Example II - Socio-economics

 $\max R_{1} + R_{2} \Leftrightarrow \max 600 m s_{1,1} p_{1} + 400 m s_{1,2} p_{1}$ Transformation: $R'_{n} = \ln(N_{n}) + m s'_{1,n} + \ln(p_{1})$ $\max \sum_{n \in N} R_{n} - M(R_{n} - \exp(R'_{n}))^{2} - M(\operatorname{ms}_{1,n} - \exp(\operatorname{ms}'_{1,n}))^{2}$

Back to the airline case study

980 flights, 2,197 itineraries, all flights have a capacity of 195 seats Same optimal prices are found for the following set of penalties:

	Revenue	Computational
Reformulated model	(in millions)	time (sec.)
M=(100,000-100,000)	52.398	42.9
M=(10,000-10,000)	52.728	29.5
M = (1,000 - 10,000)	52.728	17.0
M=(100-10,000)	52.728	11.5
M=(10-10,000)	52.728	9.2
M=(1,000-1,000)	28.870	34.02

Introduction	Demand model	Heuristic	Results	Transformation	Conclusions
Conclus	sions				

- The integrated model has promising results
- ... which motivates the effort in devising solution methodologies
- Logarithmic transformation provides a concave formulation of the revenue problem
- ... is flexible for extensions with socio-economics/more endogenous variables
- ... is expected to facilitate efficient solution methodologies

Introduction

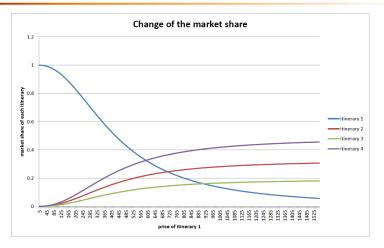
Demand model

Heuristic

Results

Transformation

Conclusions


Thank you for your attention !

Logit behavior

Introduction	Demand model	Heuristic	Results	Transformation	Conclusions
Itinerary	choice mod	lel			

• Market share and demand for itinerary *i* in market segment *s*:

$$\mathrm{ms}_{i} = \frac{\exp(V_{i}(p_{i}, z_{i}, \beta))}{\sum_{j \in I_{s}} \exp(V_{j}(p_{j}, z_{j}, \beta))} \quad \Rightarrow \quad d_{i} = D_{s} m s_{i}$$

- D_s is the total expected demand for market segment s.

- Spill and recapture effects: Capacity shortage ⇒ passengers may be recaptured by other itineraries (instead of their desired itineraries)
- Recapture ratio is given by:

$$b_{i,j} = \frac{\exp(V_j(p_j, z_j, \beta))}{\sum_{k \in I_s \setminus \{i\}} \exp(V_k(p_k, z_k, \beta))}$$

Itinerary choice model

• Value of time (VOT):

$$VOT_{i} = \frac{\partial V_{i} / \partial time_{i}}{\partial V_{i} / \partial cost_{i}}$$
$$= \frac{\beta_{time} \cdot cost_{i}}{\beta_{cost}}$$

For the same OD pair...

- VOT for economy, non-stop: 8 €/hour
- VOT for economy, one-stop: 19.8, 11, 9.2 ${\in}/{\rm hour}$
- VOT for business, non-stop: 21.7 ${\ensuremath{\in}} / {\ensuremath{\mathsf{hour}}}$

- Forecasted demand for an itinerary is 120
- Airline considers assigning a capacity of 100 to the associated flight
- Estimated spilled passengers is 20
- If these people are redirected to other itineraries in the market what percantage will accept?

Transformation

Conclusions

Results

	BONMIN Integrated model			Sequential			Local search he		
	Integrate	d model		approach (SA)		Average over 5 replications			
	Profit	Time	Profit	% deviation	Time	Profit	%deviation	%impr.	Time
	Tione	(sec)	TIONE	from BONMIN	(sec)	TIONE	from BONMIN	over SA	(sec)
1	15,091	2	15,091	0.00%	1	15,091	0.00%	0.00%	1
2	37,335	22	35,372	-5.26%	1	37,335	0.00%	5.55%	13
3	50,149	62	50,149	0.00%	1	50,149	0.00%	0.00%	1
4	46,037	2,807	43,990	-4.45%	1	46,037	0.00%	4.65%	3
5	70,904	1,580	69,901	-1.41%	1	70,679	-0.32%	1.11%	6
6	82,311	1,351	82,311	0.00%	1	82,311	0.00%	0.00%	1
7	87,212	32,400	84,186	-3.47%	1	87,212	0.00%	3.59%	60
8	779,819	8,137	779,819	0.00%	1	779,819	0.00%	0.00%	1
9	135,656	666	135,656	0.00%	2	135,656	0.00%	0.00%	2
10	107,927	482	107,927	0.00%	1	107,927	0.00%	0.00%	1
11	85,820	31,705	85,535	-0.33%	2	85,820	0.00%	0.33%	88
12	858,544	5,598	854,902	-0.42%	1	858,544	0.00%	0.43%	1
13	112,881	32,713	109,906	-2.64%	1	112,881	0.00%	2.71%	151
14	85,808	10,643	82,440	-3.93%	1	85,808	0.00%	4.09%	9
15	49,448	33	49,448	0.00%	1	49,448	0.00%	0.00%	1
16	38,205	240	37,100	-2.89%	1	38,205	0.00%	2.98%	1
17	27,076	35	27,076	0.00%	1	27,076	0.00%	0.00%	1
18	45,070	78	44,339	-1.62%	1	45,070	0.00%	1.65%	1
19	26,486	13	26,486	0.00%	1	26,486	0.00%	0.00%	1

Improvement due to the local search

	Sequential approach (SA)		dom orhood		borhood on spill	% Impro	vement
	Durifit	D. C.	T :()	Durft	T:	Quality of	Reduction
	Profit	Profit	Time(sec)	Profit	Time(sec)	the solution	in time
2	35,372	37,335	116	37,335	13	-	89.10%
4	43,990	44,302	27	46,037	3	3.92%	88.88%
5	69,901	No imp.	over SA	70,679	6	1.11%	-
7	84,186	85,335	1,649	87,212	60	2.20%	96.36%
8	904,054	906,791	209	906,791	2	-	99.04%
11	93,920	No imp.	over SA	94,203	10	0.30%	-
12	854,902	No imp.	over SA	858,545	1	0.43%	-
13	137,428	No imp.	over SA	138,575	173	0.83%	-
14	93,347	96,365	943	96,486	89	0.13%	90.56%
16	37,100	38,205	6	38,205	1	-	80.65%
18	52,369	53,128	334	53,128	1	-	99.80%
20	146,464	No imp.	over SA	147,506	380	0.71%	-
21	217,169	No imp.	over SA	219,136	1,395	0.91%	-
22	163,114	No imp.	over SA	163,393	126	0.17%	-
23	226,615	No imp.	over SA	227,284	1,283	0.30%	-
24	208,561	No imp.	over SA	210,395	791	0.88%	-
25	469,136	No imp.	over SA	470,494	1,117	0.29%	-

Intro		

A small example

- 2 airports CDG-MRS
- 4 flights all are mandatory
- 2 aircraft types: 37-50 seats

We start with an initial FAM solution:

	AC1	AC2
F1	Х	
F2	X	
F3	X	
F4	Х	

A small example - GBD iterations

Iteration 1			
	Sub	Master	
	12522.8	16923.4	
	LB	UB	
	12522.8	16923.4	
	AC1	AC2	
F1		Х	
F2		Х	
F3		Х	
F4		Х	

	Iteration 2				
		Sub	Master		
		10734.4	14822.8		
		LB	UB		
		12522.8	14822.8		
		AC1	AC2		
	F1		Х		
	F2		х		
	F3	Х			
L	F4	Х			

	Iteration	3
	Sub	Master
	12696.8	14822.8
	LB	UB
	12696.8	14822.8
	AC1	AC2
F1	Х	
F2		Х
F3		х
F4	X	

Γ	Iteration 4				
		Sub	Master		
		12474.4	12696.8		
		LB	UB		
		12696.8	12696.8		
		AC1	AC2		
	F1		Х		
	F2		Х		
	F3	Х			
	F4	Х			

 \implies

 \implies