Comparing different rebalancing operations strategies in car sharing systems:
A generic optimization framework

Selin Ataç
Nikola Obrenović, Michel Bierlaire

Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
École Polytechnique Fédérale de Lausanne

June 03, 2022
Outline

1. Introduction

2. Evaluating different rebalancing operation strategies
   - Motivation
   - Literature

3. Methodology
   - Considered system and the framework
   - Preliminary experiments
   - Rebalancing operations optimization

4. Conclusion
37.5% of the U.S. greenhouse gas emissions is due to transportation (EPA, 2021\(^1\)).

- Passenger cars contribute the most with 40.5%.

---


37.5% of the U.S. greenhouse gas emissions is due to transportation (EPA, 2021\(^1\)).

- Passenger cars contribute the most with 40.5%.

Car sharing systems

- Short rentals
- Higher car and less parking utilization
- Examples: Mobility, car2go, SHARENOW

---


37.5% of the U.S. greenhouse gas emissions is due to transportation (EPA, 2021\textsuperscript{1}).

- Passenger cars contribute the most with 40.5%.

Car sharing systems

- Short rentals
- Higher car and less parking utilization
- Examples: Mobility, car2go, SHARENOW

Introducing a car sharing system results in between 3% and 18% reduction in CO2 emissions (Amatuni et al., 2020\textsuperscript{2}).

---


Motivation

- Is shared mobility as sustainable as we think?
  - Reck et al. (2022)\(^3\) claim that personalized micro-mobility is more sustainable than the shared one.
  - One reason is costly rebalancing operations.

---


Motivation

- Is shared mobility as sustainable as we think?
  - Reck et al. (2022)\(^3\) claim that personalized micro-mobility is more sustainable than the shared one.
  - One reason is costly rebalancing operations.

- The added-value of bike rebalancing in bike sharing systems?
  - Shu et al. (2013)\(^4\) find that the number of substituted trips change as a function of number of bicycles and number of redistributions per day.
  - Periodic and frequent rebalancing operations are not necessary for some configurations of the system.

---


Motivation

- How about car sharing systems?
Motivation

- How about car sharing systems?
- The added-value of rebalancing operations in car sharing systems
  - The effect of city characteristics
  - The effect of trip demand behavior
  - The effect of different rebalancing operations strategies
  - ...
Previously in the literature...

- Martinez et al. (2017)\(^5\)
  - Agent-based model and supply side, i.e., operations by the staff such as maintenance, rebalancing, and refueling

---


Previously in the literature..

- Martinez et al. (2017)$^5$
  - Agent-based model and supply side, i.e., operations by the staff such as maintenance, rebalancing, and refueling

- Vasconcelos et al. (2017)$^6$
  - The same agent-based model as in Martinez et al. (2017)
  - Comparison between with and without rebalancing
  - Evaluating three different policies that investigates the effect of electric vehicle adoption

---


This work

- Considers a one-way station-based car sharing system.
This work

- Considers a one-way station-based car sharing system.
- Considers both supply and demand side of car sharing.
This work

- Considers a one-way station-based car sharing system.
- Considers both supply and demand side of car sharing.
- Uses a transport simulation toolkit, i.e., MATSim, and its car sharing API.
This work

- Considers a one-way station-based car sharing system.
- Considers both supply and demand side of car sharing.
- Uses a transport simulation toolkit, i.e., MATSim, and its car sharing API.
- Incorporates rebalancing operations optimization.
The framework

Figure: The framework
The framework

**Figure:** The framework
The framework

Figure: The framework
The framework

**Figure:** The framework
The framework

**Figure:** The framework
Illustrative case study

- Sioux Falls, US scenario
  - 84110 agents
  - 24 stations (5 vehicles and 5 free parking spots per station)
Illustrative case study

- Sioux Falls, US scenario
  - 84110 agents
  - 24 stations (5 vehicles and 5 free parking spots per station)
- The available transport modes are car, public transport, bike, walk, and one-way car sharing.
Illustrative case study

- Sioux Falls, US scenario
  - 84110 agents
  - 24 stations (5 vehicles and 5 free parking spots per station)
- The available transport modes are car, public transport, bike, walk, and one-way car sharing.
- Only one CSS operator is available.
Illustrative case study

- Sioux Falls, US scenario
  - 84110 agents
  - 24 stations (5 vehicles and 5 free parking spots per station)
- The available transport modes are car, public transport, bike, walk, and one-way car sharing.
- Only one CSS operator is available.
- Every agent has a membership.
Illustrative case study

- Sioux Falls, US scenario
  - 84110 agents
  - 24 stations (5 vehicles and 5 free parking spots per station)
- The available transport modes are car, public transport, bike, walk, and one-way car sharing.
- Only one CSS operator is available.
- Every agent has a membership.
- Parameters are set to default.
Scenarios

- "do nothing" scenario
  The final configuration of the vehicles for one iteration is fed back to MATSim as an initial configuration for the next iteration.
Scenarios

- "do nothing" scenario
  - The final configuration of the vehicles for one iteration is fed back to MATSim as an initial configuration for the next iteration.

- "rebalance" scenario
  - The minimum required number of vehicles per station is computed and the free parking is determined where each station has 10 total parking spots.
Results

Figure: Score statistics (rebalance)

Figure: Mode statistics (rebalance)
Comparison of two strategies

**Figure**: Number of rentals for both strategies
What happens if we plug in an optimization model?

  - Gambella et al. (2018): maximize system profit with fixed numbers of vehicles and staff and limited station capacity.
  - Zhao et al. (2018): determine the optimal numbers of vehicles and staff to serve all demand while minimizing costs, with unlimited capacity at all stations.
- A third strategy based on these two models.
  - Derived from the first strategy by considering a priority trip list and forcing the model to serve them.

---


What happens if we plug in an optimization model?

- A case study from Turin, Italy.
  - 10 stations
  - 10-70 number of vehicles
  - 0-3 staff
  - 418 trips/day
  - 96 timesteps (15 mins intervals)
  - Each instance is solved by CPLEX 22.10 on a server with Xeon(R) Gold 6140 CPU clocked at 2.30GHz and 36 processors with a time limit of 72 hours.

- ... but
  - The scale of the problem is not realistic and we can only solve it in three days!
Conclusions and future work

- A generic framework to evaluate different rebalancing operations strategies is presented.
- Preliminary experiments on Sioux Falls scenario using MATSim carsharing API show promising results.
Conclusions and future work

- A generic framework to evaluate different rebalancing operations strategies is presented.
- Preliminary experiments on Sioux Falls scenario using MATSim carsharing API show promising results.

- The next steps include
  - selecting a choice model and rebalancing operations strategies from the literature,
  - analyzing the effect of rebalancing operations that consider different strategies, and
  - applying to a bigger case study, such as Zurich, Switzerland.
Questions and discussion

Selin Ataç

Transport and Mobility Laboratory (TRANSP-OR)
École Polytechnique Fédérale de Lausanne (EPFL)

selin.atac@epfl.ch