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Introduction

Introduction

14 % of the global greenhouse gas emissions is due to transportation
(Pachauri et al., 2014).

More sustainable solutions
Carbon neutral fuel and electric cars
Ride-sharing and vehicle sharing (car, bike, e-scooter, etc.)

Bike sharing systems (BSSs)
Short rentals
Higher bike and less parking utilization
Examples: PubliBike, nextbike, mobike
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Introduction Previous work

Motivation

It comes with operational challenges.
In Ataç et al. (2020), we look into the relationship between
rebalancing operations and demand forecasting.

Real world

Discrete event simulations

to imitate the daily demand

Modeling flexible and

stochastic system behavior

Decision center

Mathematical models

to determine the routing of

rebalancing operations

More specific and

sometimes unrealistic decisions
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Introduction Previous work

Motivation

Two cases are investigated:
Unknown demand: we rebalance the system to the same initial state
every day.
Known demand: we assume that we perfectly know the trip demand
of the following day. The initial state of the next day is determined by
considering the pick-up and drop-offs at a station throughout the time
horizon of the following day.

The main idea is to see how the cost of rebalancing operations and the
number of lost demand differ between the two cases, and thereby evaluate
the demand forecasting by analyzing the trade-off between the two
scenarios.
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Notation

Set
V the set of stations, V = {0, ...,N}, where {0} is the depot

Parameters
N the number of stations
m number of relocation vehicles available
Q capacity of a relocation vehicle
qCount number of stations to be visited
cij length of the shortest path between i and j , ∀i , j ∈V
qi the difference between the number of bikes at station i at the end of the

previous day and the number of bikes desired at the beginning of the next
day, ∀i ∈V

Decision variables
xij 1 if arc (i , j) is used by a relocation vehicle, 0 otherwise, i , j ∈V
θi the load of a vehicle after it leaves node i , i ∈V
ui auxiliary decision variable for the MTZ constraints, i ∈V

SA, NO, MB (TRANSP-OR/EPFL) STRC ’21 September 14, 2021 6 / 25



D
ra
ft

Introduction Previous work

Decision center - Modified model (Dell’Amico et al., 2013)
(F1M) min

∑
i∈V

∑
j∈V

cij xij (1)

s.to
∑

i∈V
xij =1 ∀j ∈V \ {0} (2)

∑
i∈V

xji =1 ∀j ∈V \ {0} (3)

∑
j∈V

x0j ≤m (4)

∑
j∈V \{0}

x0j =
∑

j∈V \{0}
xj0 (5)

ui −uj +N ∗xij ≤N −1 ∀i , j ∈V \ {0} (6)

1≤ ui ≤N −qCount ∀i ∈V (7)

min{Q ,Q +qj } ≥ θj ≥max{0,qj } ∀j ∈V (8)

θj −θi +M(1−xij )≥ qj ∀i ∈V , j ∈V \ {0} (9)

θi −θj +M(1−xij )≥ qj ∀i ∈V \ {0}, j ∈V (10)

xij +
∑

h∈S(i ,j)
xjh ≤1 ∀i , j ∈V \ {0},h ∈S(i , j) (11)

∑
h∈S(i ,j)

xhi +xij ≤1 ∀i , j ∈V \ {0},h ∈S(i , j) (12)

θ0 =0 (13)

xii =0 ∀i ∈V (14)

xij ∈ {0,1} ∀i , j ∈V (15)
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Introduction Literature

The research question

The size of the rebalancing operations optimization model increases
exponentially.

Tailor-made branch and cut algorithms
Dell’Amico et al. (2014), Erdogan et al. (2014), Chemla et al. (2013b)

Benders decomposition
Erdogan et al. (2014)

Neighborhood search
Ho and Szeto (2017), Cruz et al. (2017)

Clustering based approaches
Schuijbroek et al. (2017), Liu et al. (2016), Boyaci et al. (2017), Feng
et al. (2017), Ma et al. (2019), Lahoorpoor et al. (2019)
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Methodology Clustering

Performance measures

The performance measures are:
(P1) the total in-cluster Manhattan distance,
(P2) the deviation of the total in-cluster demand from zero, and
(P3) the deviation of number of stations per cluster from the average
number of stations per cluster.
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Methodology Clustering

Clustering methods

We look into the following approaches:
(C1): Agglomerative hierarchical clustering (AHC) with Ward linkage
and proximity of stations as a similarity matrix

considers (P1)
(C2): AHC with Ward linkage and number of trips between
stations as a similarity matrix adapted from Lahoorpoor et al. (2019)

considers (P2)
(C3): A mixed-integer non linear program

considers all performance measures
(C4): A mixed-integer linear program

considers all performance measures
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Methodology Clustering

Clustering methods - Notation

Parameters
N number of stations (i , j ∈ {1, ...,N})
C number of clusters (c ∈ {1, ...,C })
dij the distance from station i to station j , i ,j ∈N
qi the demand at each station, i ∈N

α, β, γ weight of 1st , 2nd and 3rd objective function, respectively

Decision variable
sic 1 if station i is assigned to cluster c, 0 otherwise, i ∈N ,c ∈C

Auxiliary decision variables
devSN+

c , devSN−
c the positive and negative deviation of number of stations in cluster c

from the average number of stations per cluster, c ∈C , respectively
devD+

c , devD−
c the positive and negative deviation of total demand from 0 in cluster

c, c ∈C , respectively
inClusterDistc the total Manhattan distance between each pair of stations in

cluster c, c ∈C
mijc 1 if both i and j are in cluster c, 0 otherwise, i , j ∈N ,c ∈C
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Methodology Clustering

Clustering methods - (C3N)

(C3N)min α · ∑
c∈C

inClusterDistc (16)

+β · ∑
c∈C

(devD+
c +devD−

c ) (17)

+γ · ∑
c∈C

(devSN+
c +devSN−

c ) (18)

s.to
∑

c∈C :qi 6=0
sic =1 ∀i ∈N (19)

∑
i ,j∈N:j≥i

sic · sjc ·dij = inClusterDistc ∀i , j ∈N ,∀c ∈C (20)

∑
i∈N

sic ·qi = devD+
c −devD−

c ∀c ∈C (21)

∑
i∈N

sic = N

C
+devSN+

c −devSN−
c ∀c ∈C (22)

sic ∈ {0,1} ∀i ∈N ,c ∈C (23)

devSN+
c ,devSN−

c ≥0 ∀c ∈C (24)

devD+
c ,devD−

c ≥0 ∀c ∈C (25)

inClusterDistc ≥0 ∀c ∈C (26)
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Methodology Clustering

Clustering methods - (C3)
(C3)min α · ∑

c∈C
inClusterDistc (27)

+β · ∑
c∈C

(devD+
c +devD−

c ) (28)

+γ · ∑
c∈C

(devSN+
c +devSN−

c ) (29)

s.to
∑

c∈C :qi 6=0
sic =1 ∀i ∈N (30)

mijc ≤ sic ∀i , j ∈N ,∀c ∈C (31)

mijc ≤ sjc ∀i , j ∈N ,∀c ∈C (32)

mijc ≥ sic +sjc −1 ∀i , j ∈N ,∀c ∈C (33)∑
i ,j∈N:j≥i

mijc ·dij = inClusterDistc ∀i , j ∈N ,∀c ∈C (34)

mijc ∈ {0,1} ∀i , j ∈N ,∀c ∈C (35)∑
i∈N

sic ·qi = devD+
c −devD−

c ∀c ∈C (36)

∑
i∈N

sic = N

C
+devSN+

c −devSN−
c ∀c ∈C (37)

sic ∈ {0,1} ∀i ∈N ,c ∈C (38)

devSN+
c ,devSN−

c ≥0 ∀c ∈C (39)

devD+
c ,devD−

c ≥0 ∀c ∈C (40)

inClusterDistc ≥0 ∀c ∈C (41)
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Methodology Clustering

Clustering methods - Additional notation

Parameters
M big-M value
loni , lati the longitude and latitude of station i , i ∈N, respectively

Auxiliary decision variables
lonCc , latCc the longitude and latitude of cluster c, c ∈C , respectively
diffLonic the distance in longitude between station i and cluster c, i ∈N ,c ∈C
diffLatic the distance in latitude between station i and cluster c, i ∈N ,c ∈C
mdic the Manhattan distance between station i and cluster c, i ∈N ,c ∈C
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Methodology Clustering

Clustering methods - (C4)

(C4)min (27)+(28)+(29)
s.to (30)

loni − lonCc ≤ diffLonic ∀i ∈N ,∀c ∈C (42)

lonCc − loni ≤ diffLonic ∀i ∈N ,∀c ∈C (43)

lati − latCc ≤ diffLatic ∀i ∈N ,∀c ∈C (44)

latCc − lati ≤ diffLatic ∀i ∈N ,∀c ∈C (45)

diffLonic +diffLatic ≤mdic +M ·(1−sic ) ∀i ∈N ,∀c ∈C (46)∑
i∈N

mdic ≤ inClusterDistc ∀c ∈C (47)

(36),(37),(38)

diffLonic ,diffLatic ,mdic ≥0 ∀i ∈N ,c ∈C (48)

lonCc , latCc ≥0 ∀c ∈C (49)

(39),(40),(41)
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D
ra
ft

Computational experiments Case studies

Case studies

nextbike Sarajevo with 21
stations and approx. 120 bikes

nextbike Berlin with 298 stations
and approx. 3000 bikes
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Computational experiments Experiments

The experiments

Neither (C3N) nor (C3) are tractable, therefore they are not included
in the experimentation.

The computational experiments are done with (C1), (C2), and (C4).
Lexicographic method is tried.

No solutions in real time

(C4) is experimented with the following two settings:

(C4DD): β » α » γ

(C4ICD): α » β » γ

SA, NO, MB (TRANSP-OR/EPFL) STRC ’21 September 14, 2021 17 / 25
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Computational experiments Results

Sarajevo with 2 clusters

Clustering with (C1)

Clustering with (C2)

Clustering with (C4DD )

Clustering with (C4ICD )
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Computational experiments Results

Berlin with 10 clusters

Clustering with (C1)

Clustering with (C2)

Clustering with (C4DD )

Clustering with (C4ICD )
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Computational experiments Results

Rebalancing cost (in kms) for all the clustering methods

Dataset # of clusters (C1) (C2) (C4DD) (C4ICD)

Sarajevo 2 9.728 15.591 12.709 12.627

10 75.351 372.332 139.880 126.983
Berlin 15 83.393 103.923 163.261 173.630

20 90.471 120.289 159.271 197.483

The costs resulted from application of (C2) increase compared to
(C1).

Accumulation in a few stations

Compared to (C1), the kilometers traveled for both (C4DD) and
(C4ICD) increases.

Overlapping clusters

The demand-based objective does not reduce the rebalancing cost.

Large optimality gap
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Large optimality gap
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Conclusion

Different clustering methods are assessed.

AHC using proximity results in geographically collective clusters, but
not zero demand deviation.
AHC using number of trips brings about uneven distribution in number
of stations.
(C4) overcomes this yet the areas spanned by each cluster tend to
overlap some other clusters.
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The future work includes
A heuristic approach for multi-objective station clustering

Testing the approaches for many days to achieve statistical significance
The consideration of different data sets to derive conclusions about
the relation between the city and demand structure
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Appendix The base model

Mathematical model - The base model (Dell’Amico et al.,
2013)

(F3)min
∑

i∈V

∑
j∈V

cij xij

s.to
∑

i∈V
xij = 1 ∀j ∈V \ {0}∑

i∈V
xji = 1 ∀j ∈V \ {0}∑

j∈V
x0j ≤m

∑
j∈V \{0}

x0j =
∑

j∈V \{0}
xj0∑

i∈S

∑
j∈S

xij ≤ |S |−1 ∀S ⊆V \ {0},S 6= ;

min{Q ,Q +qj } ≥ θj ≥max{0,qj } ∀j ∈V

θj −θi +M(1−xij )≥ qj ∀i ∈V , j ∈V \ {0}

θi −θj +M(1−xij )≥ qj ∀i ∈V \ {0}, j ∈V

xij ∈ {0,1} ∀i , j ∈V
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Appendix Results

Sarajevo - 2 clusters

Figure: Clustering with (C1)
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Appendix Results

Sarajevo - 2 clusters

Figure: Clustering with (C2)
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Appendix Results

Sarajevo - 2 clusters

Figure: Clustering with (C4DD)

SA, NO, MB (TRANSP-OR/EPFL) STRC ’21 September 14, 2021 4 / 9



D
ra
ft

Appendix Results

Sarajevo - 2 clusters

Figure: Clustering with (C4ICD)
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Appendix Results

Berlin - 10 clusters

Figure: Clustering with (C1)
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Figure: Clustering with (C2)
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Figure: Clustering with (C4ICD)
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