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Introduction

What is a Vehicle Sharing System (VSS)?

A VSS enables users to use the available vehicles generally for short period
of time.
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Introduction

Challenges

These systems experience many challenges:
Vehicle imbalance,
Pricing,
Demand modeling,
etc.
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Introduction Proposed framework

The framework

To understand how these are related, we propose a management framework
for VSSs (Atac et al., 2019).

From decision maker point of view
Applies to any kind of VSS
Three dimensional classification

Decision levels: Strategic, Tactical, and Operational
Actors: Supply and Demand
Layers: Data, Models, and Actions

Relations between the components
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Introduction Proposed framework

Figure: General framework and inter-relations
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Introduction Proposed framework

Big picture - revisited

VSS related literature mainly focuses on rebalancing problems and
their solutions by formulating them as VRP or TSP.

Modeling the demand is also studied, but the added value of
constructing such a model is not investigated.
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Methodology The idea

The idea

Real world

Discrete event simulations:

1- the daily demand

2- the rebalancing operations

Modeling flexible and

stochastic system behavior

Decision center

Mathematical models

to determine the routing of

rebalancing operations

More specific and

sometimes unrealistic decisions
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Methodology The idea

The cases

Two cases are investigated:
Unknown demand: we rebalance the system to the same initial state
every day.
Known demand: we assume that we perfectly know the trip demand
of the following day. The initial state of the next day is determined by
considering the pick-up and drop-offs at a station throughout the time
horizon of the following day.

The main idea is to see how the cost of rebalancing operations and the
number of lost demand differ between the two cases.
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Methodology Simulation

Real world - Simulation

State variables:
t: time,
Current vehicle availability at each station,
Location of the orders in the system.

Parameters:
T : the time horizon,
N: the number of stations,
P : number of time windows,
Ci : the capacity of a station i , i = 1, ...,N,
ckij : the distance from station i to station j with mode k , i = 1, ...,N,
j = 1, ...,N, and k = {’walking’,’bicycle’,’car’},
TWp: the pth time window, p = 1, ...,P ,
λp: the number of O-D pair requests per hour for time window p,
p = 1, ...,P .
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Methodology Simulation

Real world - Simulation

Indicators:
The travel time from origin to destination and from pick-up station to
drop-off station,
Number of users using the system,
The number of lost demand.

Assumptions:
After T , only the events in the system are served and no new requests
are accepted.
Reserving a vehicle is not possible.
The O-D pair requests are spatially and temporally uniformly
distributed.
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Methodology Mathematical model

Decision center

Set:
V : the set of stations, V = {0, ...,N}, where {0} is the depot.

Parameters:
m: the number of relocation vehicles available,
Q: the capacity of a relocation vehicle,
cij : the length of the shortest path between i and j , ∀i , j ∈V ,
qi : the difference between the number of bikes at station i at the end
of the previous day and the number of bikes desired at the beginning
of the next day, ∀i ∈V .

Decision variable:

xij =
{
1, if arc (i , j) is used by a relocation vehicle
0, otherwise

∀i , j ∈V , (1)
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Decision center - Modified model (Dell’Amico et al., 2013)

min
∑
i∈V

∑
j∈V

cij xij (2)

s.to
∑
i∈V

xij =1 ∀j ∈V \ {0} (3)

∑
i∈V

xji =1 ∀j ∈V \ {0} (4)

∑
j∈V

x0j ≤m (5)

∑
j∈V \{0}

x0j =
∑

j∈V \{0}
xj0 (6)

ui −uj +n∗xij ≤ n−1 ∀i , j ∈V \ {0} (7)

1≤ ui ≤ n ∀i ∈V (8)

min{Q ,Q+qj } ≥ θj ≥max{0,qj } ∀j ∈V (9)

θj −θi +M(1−xij )≥ qj ∀i ∈V , j ∈V \ {0} (10)

θi −θj +M(1−xij )≥ qj ∀i ∈V \ {0}, j ∈V (11)

xij +
∑

h∈S(i ,j)
xjh ≤1 ∀i , j ∈V \ {0},h ∈S(i , j) (12)

∑
h∈S(i ,j)

xhi +xij ≤1 ∀i , j ∈V \ {0},h ∈S(i , j) (13)

xii =0 ∀i ∈V (14)

xij ∈ {0,1} ∀i , j ∈V (15)
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Computational experiments Parameter settings

Parameter settings

This case study assumes bike sharing systems (BSSs).
Station locations and the total number of vehicles available are
obtained from PubliBike.
We assume that there are 175 bikes in total and are distributed
uniformly among the stations at the beginning of the time horizon.
The rest of the parameters are set as follows:

T : 1 day,
N: 35,
Ci is set to infinity for each station i ∈V ,
λp depends on the scenario,
m: 2,
Q: 40.
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Computational experiments Parameter settings

Real world - Data

Figure: PubliBike stations and corresponding isoline polygons
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Computational experiments Scenarios

The scenarios

For each case we test four scenarios:
Uniform: λp = 20, ∀p ∈P and demand is spatially uniformly
distributed.
Temporal differences: The day is divided into 5 time windows, each
window has a different λp, and demand is spatially uniformly
distributed.
Spatial differences: λp = 20, ∀p ∈P but altitude differences are
taken into account.
Spatial and temporal differences: Both the spatial and temporal
differences mentioned above are taken into account.
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Computational experiments Results

Lost demand vs days
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Computational experiments Results

Lost demand - comparing the scenarios

Figure: Lost demand over 100 days (Unknown demand case)
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Computational experiments Results

Rebalancing cost vs days
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Conclusion

Results obtained so far

The main structure of the framework is completed.
The discrete-event simulator of the VSS daily demand is developed.
A mathematical model for rebalancing operations is selected from the
literature and it is modified so that it can solve the problem with 35
stations.
A small case study showed promising results.
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Conclusion

Future work

The future work includes
The development of rebalancing simulation
The consideration of different scenarios
Application on real data1

1https://bikeshare-research.org
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Conclusion

Questions and discussion

Selin Ataç

Transport and Mobility Laboratory (TRANSP-OR)
École Polytechnique Fédérale de Lausanne (EPFL)

selin.atac@epfl.ch
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Appendix Simulation

Simulation events

Station-based configuration is assumed.
Reservations are not possible.

Event Triggered Event Queue
Sim Start REQUEST, Sim End -

REQUEST
REQUEST (if t <T ),
PICKUP (if an available station is in 20 min walk)

ns = ns +1
-

PICKUP DROPOFF (if there are available vehicles) nu = nu+1

DROPOFF
DROPOFF (if no parking available),
COMPLETED

-
nu = nu−1

COMPLETED ns = ns −1
Sim End -

SA, NO, MB (TRANSP-OR/EPFL) STRC ’20 May 13, 2020 1 / 10
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Appendix The base model

Mathematical model - The base model (Dell’Amico et al.,
2013)

(F3)min
∑
i∈V

∑
j∈V

cijxij

s.to
∑
i∈V

xij = 1 ∀j ∈V \ {0}∑
i∈V

xji = 1 ∀j ∈V \ {0}∑
j∈V

x0j ≤m∑
j∈V \{0}

x0j =
∑

j∈V \{0}
xj0∑

i∈S

∑
j∈S

xij ≤ |S |−1 ∀S ⊆V \ {0},S 6= ;

min{Q ,Q+qj } ≥ θj ≥max{0,qj } ∀j ∈V
θj −θi +M(1−xij )≥ qj ∀i ∈V , j ∈V \ {0}

θi −θj +M(1−xij )≥ qj ∀i ∈V \ {0}, j ∈V
xij ∈ {0,1} ∀i , j ∈V

where

xij =
{
1, if arc (i , j) is used by a relocation vehicle
0, otherwise ∀i , j ∈V
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Appendix Results

Lost demand vs days - Uniform
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Appendix Results

Lost demand vs days - Temporal
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Appendix Results

Lost demand vs days - Spatial
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Appendix Results

Lost demand vs days - Spatial and temporal
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Appendix Results

Rebalancing cost vs days - Uniform
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Appendix Results

Rebalancing cost vs days - Temporal
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Appendix Results

Rebalancing cost vs days - Spatial
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Appendix Results

Rebalancing cost vs days - Spatial and temporal
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