Designing a MATSim environment for a one-way car sharing system as a transport mode

Selin Ataç

Nikola Obrenović, Michel Bierlaire

Transport and Mobility Laboratory (TRANSP-OR) École Polytechnique Fédérale de Lausanne (EPFL)

INFORMS Annual Meeting 2021 Anaheim, California

Outline

ANSP-OR

- Introduction
- Literature review
- Methodology
- Computational experiments
- Conclusion and future work

Introduction

- 14% of the global greenhouse gas emissions is due to transportation (Pachauri et al., 2014)
- More sustainable solutions
 - Carbon neutral fuel and electric cars
 - Ride-sharing and vehicle sharing (car, bike, e-scooter, etc.)
- Car sharing systems (CSSs)
 - Higher vehicle utilization
 - Less parking utilization
 - Examples: Mobility, car2go, DriveNow

Introduction

• Different configurations of CSSs

- Round-trip or one-way trips
- Fixed and dynamic pricing
- Station-based or free-floating
- Static or dynamic rebalancing
- This study considers
 - A one-way station-based CSS which adopts static rebalancing and fixed pricing

informs annual meet

Research question

EPFL

- It is costly to collect data.
- The data collected is not complete.
 - Ciari et al. (2013)
 - Modeling CSS with the Multi-Agent Transport Simulation (MATSim)
 - Balac et al. (2016)
 - Examining supply and demand relationship by looking at different values of fleet size and trip configuration
 - Parking reservation system
 - Balac et al. (2019)
 - Rebalancing operations for a free-floating CSS
- What is the effect of rebalancing operations in oneway CSSs?
 - Examine the effect of the number of cars, number of parking spaces, and willingness to walk values on the system

informs annual meeting

5

Multi-Agent Transport Simulation (MATSim)

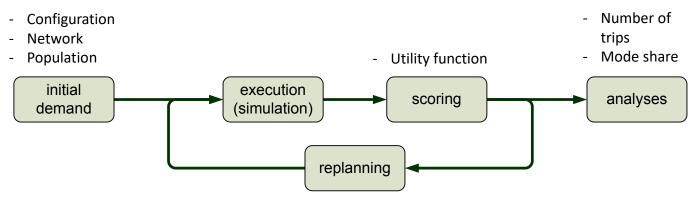


Figure: MATSim loop (Horni, Nagel, and Axhausen, 2016)

- Agent-based simulation
 - Each person corresponds to an agent.
 - Each person has an individual plan for the day.
- Simulates one day, several times
- The utility function defines the scores
- Availability of the car sharing API
 - Additional files: CSS stations and memberships

Selin Ataç, INFORMS Annual Meeting 2021

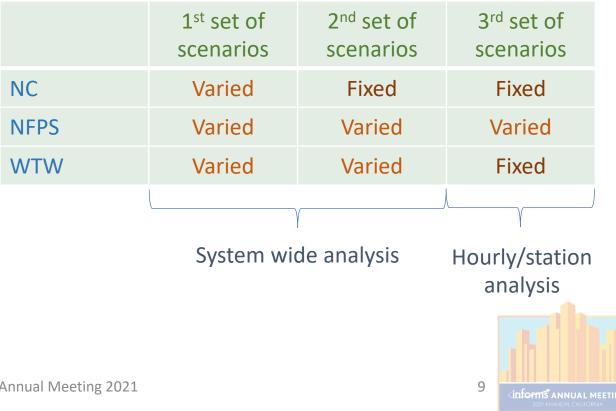
6

Assumptions


- Transport modes are walking and CSS.
 - The mode share is not analyzed.
- Only one CSS operator is available.
 - We do not consider competition.
- Every agent has a CSS membership.
- A sample of 10% of the population is considered.
- The parameters are set to default.

Case study / Sioux Falls

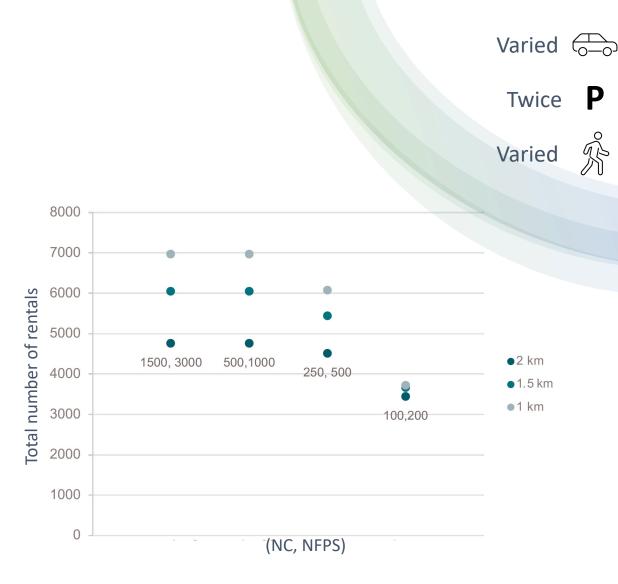
- A small network
- 24 CSS stations
- Data processing
 - Visualization with Via
 - Numerical analysis with MATLAB

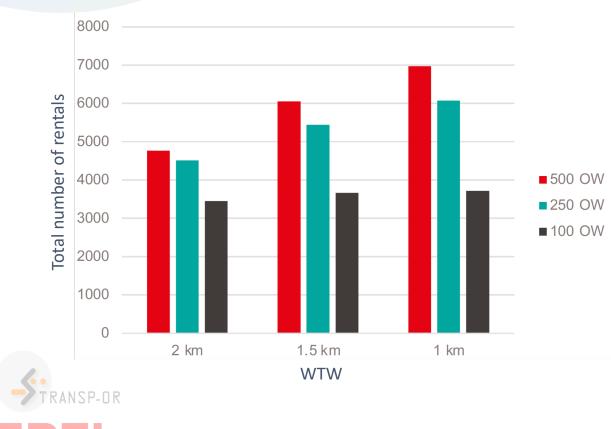


8

Case study / Sioux Falls Experimental design

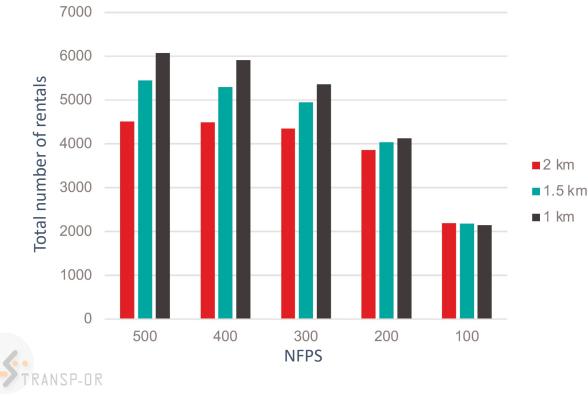
- Number of cars (NC)
 - 100, 250, 500, 1500
- Number of free parking spots per station (NFPS)
 - 200, 500, 1000, 3000 (1st set of scenarios)
 - 100, 200, 300, 400, 500 (2nd and 3rd set of scenarios)
- Willingness to walk (WTW)
 - 1 km, 1.5 km, 2 kms




Case study / Sioux Falls Saturation of number of rentals

- 84'000 agents
 - 10% of the sample: ~8'000 agents
- Activity chains of agents
 - home-work-home --> 2 legs
- Mode shares
 - 75% CSS and 25% walking
- There should be 12'000 trips (0.75 8000 2)
 - However, we observe 6'000 trips.
 - Why?

Case study / Sioux Falls Effect of limiting available cars per station

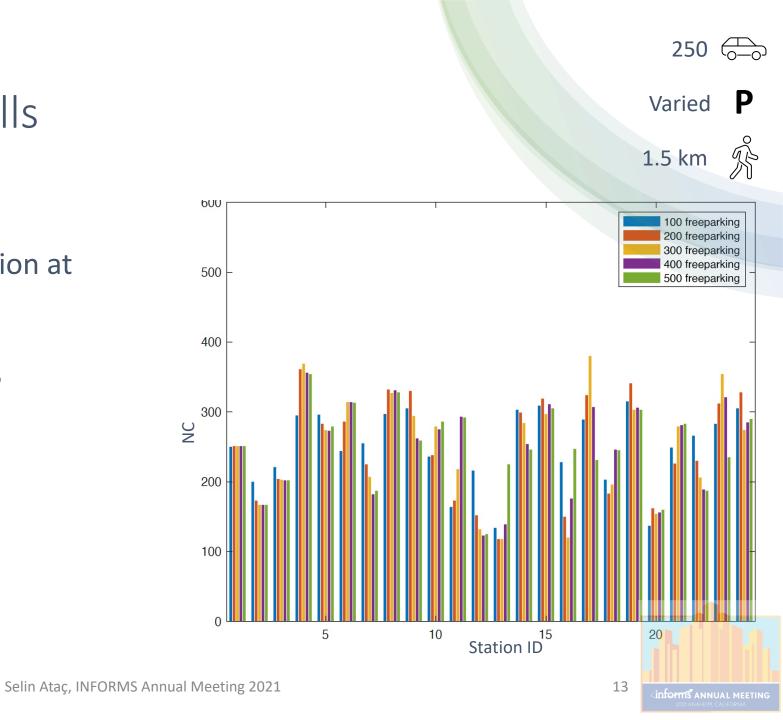

- Higher NC increases number of rentals
- Consistent for all WTW values
- With 250 cars we already achieve 90% of maximum number of rentals
 - Therefore, we continue with this value in the following scenarios.

Varied

Case study / Sioux Falls Effect of limiting available parking spaces

- Higher NFPS increases number of rentals
- Consistent for all WTW values
- Expected performance
 - We set the WTW to 1.5 km in the following scenarios.

250


R

Varied

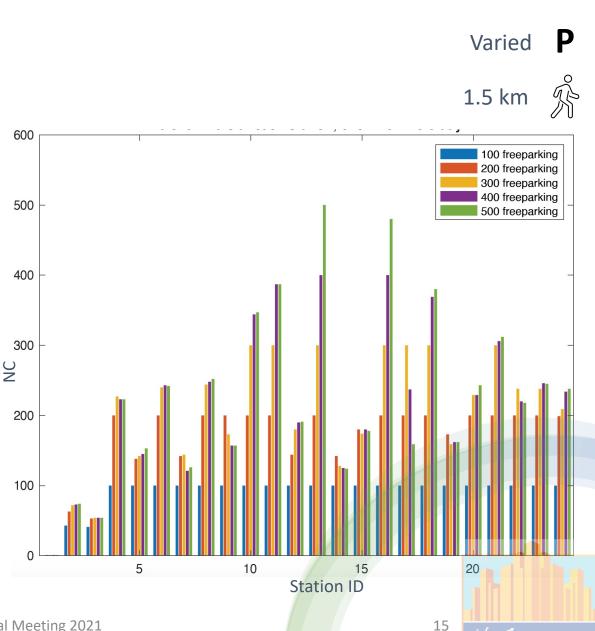
Varied

Case study / Sioux Falls Final configuration

- More than 100 cars at all station at the end of the day
- Rebalancing
 - What happens during the day?

Case study / Sioux Falls Departures

- Number of departures increase with higher NFPS
- Significant change for stations 13 and 16
 - Station 13: 250 cars at the beginning of the day, yet around 500 departures

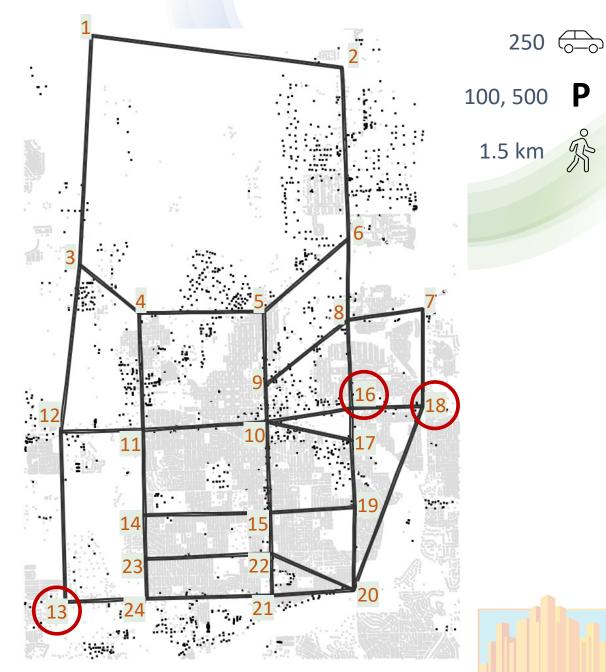


cinforms ANNUAL

Case study / Sioux Falls Arrivals

- Number of arrivals is significantly less than number of initially free parking spots
- A bug in MATSim source code
 - The parking spot is not declared "free" when a car leaves a station

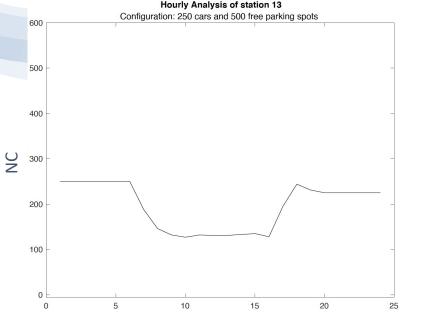
Selin Ataç, INFORMS Annual Meeting 2021

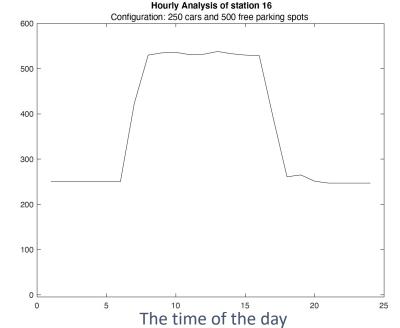

informs AN

250

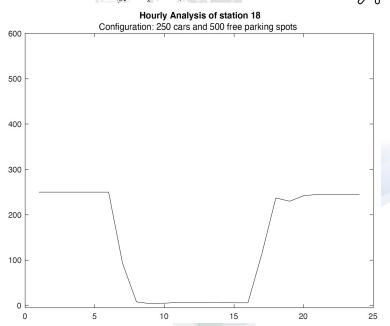
Case study / Sioux Falls Hourly analysis

• Three stations that have the highest number of departure are chosen.


NSP-OR



250 € 500 **P** 1.5 km %


Case study / Sioux Falls Hourly analysis / Station 13

- People leave between 7 AM and 8 AM
- People arrive between 5 PM
 and 6 PM
 TRANSP-OR

- People arrive between 7 AM and 8 AM
- People leave between 5 PM and 6 PM

- People leave between 7 AM and 8 AM
- People arrive between 5 PM and 6 PM
- NC is close to zero during the day

0-300

0-500

1.5 km

Case study / Sioux Falls Heterogeneous configuration

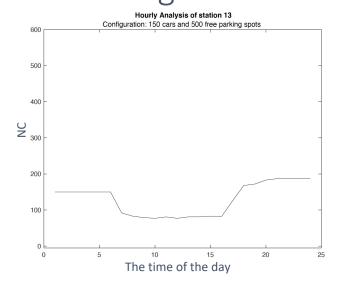
Station ID NC NFPS 13 150 500 14 150 150 150 200 15 16 250 200 17 150 300 18 300 400 Total 4050 5900

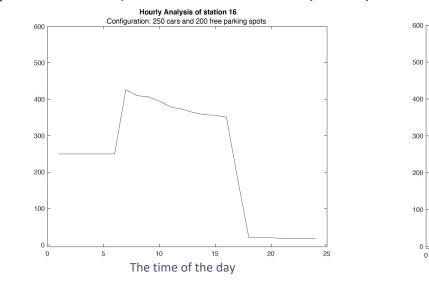
- Formation of an initial station configuration, where the number of cars and free parking spots are not the same at every station
 - Choice in function of the number of departures and arrivals

	Configuration NC/NFPS	Heterogeneous	250/100	250/500
	Total number of rentals	4944	2184	5446
	% of maximum number of rentals	82%	36%	90%
	Fleet size (total number of cars)	4050	6000	6000
• T R A N	Total number	5900	2400	12000

• Evaluation

- Performance: 82% of maximum number of rentals
- Lower fleet size
- Lower investment costs


Selin Ataç, INFORMS Annual Meeting 2021


1.5 km

Case study / Sioux Falls Heterogeneous configuration / Stations 13, 16, and 18

- More cars at the end of the day
- Station 13 shows high number of departures and arrivals throughout the day

NSP-OR

- High difference between the morning time and the evening time
 - It might be due to limited arrivals
 - Rebalancing necessary

• Same number of cars in the morning and in the evening

The time of the day

20

25

19

Hourly Analysis of station 18 Configuration: 300 cars and 400 free parking spots

- Almost zero cars available during the day
- Ideal performance
 - No need for rebalancing

informs annual meeting

Summary of the results

- Some bugs in the implementation are found and reported.
- The number of arrivals at stations is strictly limited to the initial NFPS.
- Configuration at the end of the day is an indicator for rebalancing.
- Different scenarios allow us to determine a well-performing station configuration.
- Ideal performance is that the stations perform at capacity (cars and parking)
 - Not realistic since the people change schedules from one day to the other
 - Yet, MATSim helps us to get an idea about the general dynamics of the system and plan rebalancing operations accordingly.

Conclusion and future work

MATSim

- Shows realistic behavior of agents
- Gives an idea on system performance
- Simulates one day only
- Future work includes
 - Developing rebalancing operations module for a one-way station-based CSS
 - Examining the effect of static rebalancing

informs ANNUAL MEETING

References

- Balac, M., Ciari, F. and Axhausen, K. W. 2016. Carsharing Demand Estimation Zurich, Switzerland, Area Case Study. s.l.: Transportation Research Record 2536, 2016. https://doi.org/10.3141/2536-02.
- Balac, M., Becker, H., Cirai, F., Axhausen, K. W. 2019. Modeling competing free-floating carsharing operators: A case study for Zurich, Switzerland. s.l. : Transportation Research Part C: Emerging Technologies 98, 2019. http://doi.org/10.1016/j.trc.2018.11.011.
- Ciari, F., Schuessler, N. and Axhausen, K. W. 2013. Estimation of Carsharing Demand Using an Activity-Based Microsimulation Approach. s.l. : International Journal of Sustainable Transportation, 2013. https://doi.org/10.1080/15568318.2012.660113.
- Horni, A., Nagel, K. and Axhausen, K. W. 2016. The Multi-Agent Transport Simulation MATSim. London : Ubiquity Press, 2016. DOI:10.5334.
- Simunto GmbH. Via allows to work with MATSim data and other large spatio-temporal datasets. [Online] Simunto. https://www.simunto.com/via/.
- MATSim Community. 2021. MATSim Multi-Agent Transport Simulation. [Online] 2021. https://www.matsim.org.

