A framework for a vehicle sharing system

Selin Ataç, Nikola Obrenović, Michel Bierlaire

Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering École Polytechnique Fédérale de Lausanne

June 26, 2019

Outline

SA,NO,MB (TRANSP-OR/EPFL)

EURO '19

June 26, 2019 2 / 20

3

< ロト < 同ト < ヨト < ヨト

What is a Vehicle Sharing System (VSS)?

A VSS enables users to use the available vehicles generally for short period of time by an RFID card or smart phone application identification.

• Various system configurations

- One-way or return trip
- Station-based or free-floating
- Rebalancing with operators or trucks
- Dynamic or fixed pricing
- ...

Car-sharing companies

- 34

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Bike-sharing companies

- 32

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Imbalance in the network

- Bicycle-sharing systems (BSSs)
 - Vehicle routing problem (VRP) (Ghosh et al., 2016 & Liu et al., 2016)
 - Capacitated traveling salesman problem (TSP) (*Pal and Zhang et al., 2017*)
- Car-sharing systems (CSSs)
 - Multi-TSP (Nourinejad et al., 2015)
 - Mixed Integer Linear Programming (MILP) models (*Boyaci et al., 2017*)
 - Importance of the relation between demand forecasting and rebalancing (*Jorge and Correia, 2013*)
 - Denial of the requests in the case of high demand (Boyaci et al., 2017)

Demand estimation

BSSs

- Machine learning algorithms (Liu et al., 2016)
- Simulating the demand with a Poisson process (Ghosh et al., 2016)
- Worst-case demand (Ghosh et al., 2016)
- CSSs
 - AutoRegressive Integrated Moving Average (ARIMA) (*Müller and Bogenberger, 2015*)
 - Holt-Winter's method (Müller and Bogenberger, 2015)

(日) (同) (三) (三) (三)

Pricing

BSSs

- Prices are assigned dynamically independently of their origin or depending on the itinerary of the customer. (*Chemla et al., 2013, Waserhole, 2013*)
- Dynamic pricing improved the level of service for the weekends. (*Pfrommer et al., 2014*)
- CSSs
 - Incentives on pricing which encourages users to do trips which reduces the imbalance of the network. (*Jorge and Correia, 2013*)
 - Balance of the system is improved, but less demand is served. (*Jorge and Correia, 2013*)

Big picture

• Shared mobility systems: an updated survey by Laporte et al., (2018)

- Two dimensional classification
 - Type of the problem
 - Decision level
- Lack of research in some specific areas
 - Pricing incentives and routing problems at strategic level
 - Locating stations in tactical and operational levels
- This work aims to provide a holistic solution approach for the VSSs.
 - From decision maker point of view
 - Three dimensional classification
 - Supply and Demand
 - Data, Models, and Actions
 - Decision levels: Strategic, Tactical, and Operational
 - Relations between the components

A decision level

• A first look to the general framework

Figure: General framework - the first look

3

(a)

Strategic level

- Corresponds to long-term decisions
 - What kind of system are we dealing with?
 - How is the scope defined?
- Planning horizon
 - More than a year

Figure: General framework - strategic level

SA,NO,MB (TRANSP-OR/EPFL)

EURO '19

June 26, 2019 11 / 20

Tactical level

- Corresponds to mid-term decisions
 - How do we utilize the strategic level decisions?
 - Which decisions should we pass to the operational level?
- Planning horizon
 - 4-6 months

Figure: General framework -- tactical level

SA,NO,MB (TRANSP-OR/EPFL)

EURO '19

June 26, 2019 12 / 20

Operational level

- Corresponds to short-term decisions
 - What is the current situation of the system?
 - What do we do next time step?
- Planning horizon
 - Daily/hourly

Figure: General framework - operational level

SA,NO,MB (TRANSP-OR/EPFL)

EURO '19

June 26, 2019 13 / 20

Big picture - revisited

Figure: General framework and inter-relations

SA,NO,MB (TRANSP-OR/EPFL)

June 26, 2019 14 / 20

- 34

Big picture - revisited

- The literature consists works on BSSs and CSSs.
- New types of vehicles are being introduced in VSSs.
- However, some of the approaches become inapplicable for the new types of vehicles.

An example - Light Electric Vehicles (LEVs)

• A new type of Light Electric Vehicles (LEVs)

- You don't need a car driving license
- You can ride on bicycle lane
- You are protected from bad weather

Image: A matrix and a matrix

- There's a room for luggage
- Free-floating parking

- The system is available to a higher portion of the population.
- Conventional rebalancing ideas should be adapted.
- Free-floating structure is not widely studied.

Conclusion and future work

- A general framework for VSSs is presented.
- Inter- and intra-relations between framework components are discussed.

- An application will be done on newly introduced LEVs.
- We will focus on a specific component of the framework.
- Demand forecasting component is quite promising. We will first analyze the added value of constructing a disaggregate demand model.
 - Simulating the system
 - Comparison between perfect information and no information on demand

selin.atac@epfl.ch

References I

- G. Laporte, F. Meunier, and R. Woler Calvo, "Shared mobility systems," 4OR, vol. 13, pp. 341-360, Dec 2015.
- G. Laporte, F. Meunier, and R.Woler Calvo, "Shared mobility systems: an updated survey," Annals of Operations Research, vol. 271, pp. 105-126, Dec 2018.
- S. Ghosh, M. Trick, and P. Varakantham, "Robust repositioning to counter unpredictable demand in bike sharing systems," 2016.
- J. Müller, and K. Bogenberger. "Time series analysis of booking data of a free-floating Carsharing system in Berlin." Transportation Research Procedia 10, pp. 345-354, 2015
- J. Liu, L. Sun, W. Chen, and H. Xiong, "Rebalancing bike sharing systems: A multi-source data smart optimization," in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '16, (New York, NY, USA), pp. 1005-1014, ACM, 2016.
- A. Pal and Y. Zhang, "Free-floating bike sharing: Solving real-life large-scale static rebalancing problems," Transportation Research Part C: Emerging Technologies, vol. 80, pp. 92-116, 2017.
- M. Nourinejad, S. Zhu, S. Bahrami, and M. J. Roorda, "Vehicle relocation and staff rebalancing in one-way carsharing systems," Transportation Research Part E: Logistics and Transportation Review, vol. 81, pp. 98-113, 2015.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

References II

- B. Boyaci, K. G. Zografos, and N. Geroliminis, "An integrated optimization-simulation framework for vehicle and personnel relocations of electric carsharing systems with reservations," Transportation Research Part B: Methodological, vol. 95, pp. 214-237, 2017.
- D. Jorge and G. Correia, "Carsharing systems demand estimation and defined operations: a literature review," European Journal of Transport and Infrastructure Research, vol. 13, no. 3, 2013.
- B. Boyaci, K. G. Zografos, and N. Geroliminis, "An optimization framework for the development of efficient one-way car-sharing systems," European Journal of Operational Research, vol. 240, no. 3, pp. 718-733, 2015.
- D. Chemla, F. Meunier, T. Pradeau, R. W. Calvo, and H. Yahiaoui, "Self-service bike sharing systems: simulation, repositioning, pricing," 2013.
- A. Waserhole, Vehicle sharing systems pricing optimization. PhD thesis, Universite de Grenoble, 2013.
- A. Waserhole and V. Jost, "Vehicle sharing system pricing regulation: A fluid approximation. 2013," URL http://hal.archives-ouvertes.fr/hal-00727041.
- J. Pfrommer, J. Warrington, G. Schildbach, and M. Morari, "Dynamic vehicle redistribution and online price incentives in shared mobility systems," IEEE Transactions on Intelligent Transportation Systems, vol. 15, no. 4, pp. 1567-1578, 2014.
- "How it works.." https://www.enuu.ch. [Online; accessed 25-February-2019].

イロト イボト イヨト イヨト 一日