Event-based modeling approach for the multi-agents daily scheduling problem

Prunelle Vogler Frédéric Meunier Michel Bierlaire

Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne

3rd EPFL Symposium on Transportation Research, Barcelona 12-14 February 2025

▲ 伺 ▶ ▲ 三 ▶

Outline

Introduction

- Multi-agents Daily Scheduling Problem
- Event-based modeling
- Interest of the model and further steps

Transport demand modeling

Activity-Based Models

- Participation in activities.
- $\bullet\,$ How people plan activities \rightarrow transport demand

Simultaneous Choice Modeling

• Choices are not made sequentially.

The Daily Scheduling Problem

- Variables: Activity participation, Scheduling and Transport mode.
- Objective: Maximize agent's utility over the day.

EPE

Literature Review

Previous work on the Daily Scheduling Problem.

	-	[, ====]	[Cortes Balcells et al., 2023]
Method	MILP	MILP	Dynamic programming
Scope	One agent	Household	One agent
	No private vehicle	Private vehicle	Additional constraints

Table 1: Comparison of DS models.

What we will see: a new formulation of the Multi-agents Daily Scheduling Problem as a minimum cost flow problem in a graph.

Eb2/

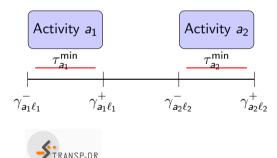
Outline

Introduction

- Multi-agents Daily Scheduling Problem
- Event-based modeling
- Interest of the model and further steps

Multi-agents Daily Scheduling Problem: activities

- N: set of agents.
- A_n: activities that can be performed by agent n.
- A_n^{mand} : mandatory activities of *n*.



- *L_a*: **locations** for activity *a*.
- $c_{a\ell}$: cost of performing activity *a* at location ℓ .
- [γ⁻_{aℓ}, γ⁺_{aℓ}]: opening hours for activity a at location ℓ.
- τ_a^{\min} : minimum duration for activity *a*.
- C_a: maximum capacity of activity a.
- *N_a*: collection of agents needed to perform *a*.

Multi-agents Daily Scheduling Problem: transport modes

- $M_n^{k\ell}$: available **transport modes** between locations k and ℓ for agent n.
- $\rho_{k\ell m}$ and $d_{k\ell m}$: cost and duration of trip (k, ℓ) with mode m.

イロト 不得下 イヨト イヨト

Multi-agents Daily Scheduling Problem: transport modes

- $M_n^{k\ell}$: available **transport modes** between locations k and ℓ for agent n.
- $\rho_{k\ell m}$ and $d_{k\ell m}$: cost and duration of trip (k, ℓ) with mode m.

Problem: Schedule the full day T of every agent (activities, time, trips) under budget constraint (B) and to maximize the aggregate utility.

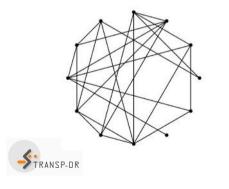
イロト イヨト イヨト

Outline

- Introduction
- Multi-agents Daily Scheduling Problem
- Event-based modeling
- Interest of the model and further steps

Event-based modeling approach

- Inspired by Dial-a-Ride models [Gaul et al., 2022]
- Minimum cost flow in a graph G = (V, E) with additional constraints.



1 How do we build the graph ?

2 What are the additional constraints ?

Vertices in the Graph

- For each activity a and location $\ell \in L_a$, define a vertex $v = (a, \ell, S)$.
- *S* \subseteq *N* is a subset of agents satisfying:

1
$$S \subseteq \{n \in N : a \in A_n\}$$

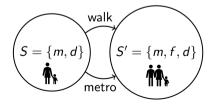
2 $|S| \le C_a$
3 $\exists X \subseteq S$ such that $X \in N_a$

• Interpretation: S is a subset of agents performing activity a at location ℓ .

Edges in the Graph

- Let $v = (a, \ell, S)$ and $v' = (a', \ell', S')$ be two vertices.
- If $S \cap S' \neq \emptyset$, for every mode $m \in \bigcap_{n \in S \cap S'} M_n^{\ell \ell'}$, there is a directed edge e = (v, v') with label $m_e = m$.
- (Multiple directed edges can exist between two vertices.)

Example: $v = (a, \ell, S)$ and $v' = (a', \ell', S')$. $M_m^{\ell\ell'} = \{ \text{ walk, metro, bike } \}, M_f^{\ell\ell'} = \{ \text{ walk, metro, bike } \}, M_d^{\ell\ell'} = \{ \text{ walk, metro } \}.$



PV. FM. MB (EPFL)

(1日) (1日) (1日)

Min cost flow with additional constraint

Now that we have G, the problem becomes:

- compute one directed path in G for each agent
- a starting time x_v and a duration τ_v for each visited vertex v
- under combinatorial constraints, time-consistency constraints and a budget constraint.
- maximizing the aggregated utility.

Additional Constraints

Combinatorial Constraints.

- Path of agent *n* only visits vertices (a, ℓ, S) where $n \in S$.
- Path of agent *n* visits at least one vertex (a, ℓ, S) for each $a \in A_n^{\text{mand}}$.
- If a path of agent n visits (a, ℓ, S) , then paths of all agents in S must visit that vertex.

Additional Constraints

Combinatorial Constraints.

- Path of agent *n* only visits vertices (a, ℓ, S) where $n \in S$.
- Path of agent *n* visits at least one vertex (a, ℓ, S) for each $a \in A_n^{\text{mand}}$.
- If a path of agent n visits (a, ℓ, S) , then paths of all agents in S must visit that vertex.

Time-Consistency Constraints.

- If vertex $v = (a, \ell, S)$ is visited, then $x_v \in [\gamma_{a,\ell}^-, \gamma_{a,\ell}^+]$ and $\tau_v \ge \tau_a^{\min}$.
- If arc (v, v') labeled with m is visited, then $x_v + \tau_v + d_{\ell,\ell',m} = x_{v'}$.
- For each agent, the duration of activities and trips should cover the whole day T.

13/20

Additional Constraints

Combinatorial Constraints.

- Path of agent *n* only visits vertices (a, ℓ, S) where $n \in S$.
- Path of agent *n* visits at least one vertex (a, ℓ, S) for each $a \in A_n^{\text{mand}}$.
- If a path of agent n visits (a, ℓ, S) , then paths of all agents in S must visit that vertex.

Time-Consistency Constraints.

- If vertex $v = (a, \ell, S)$ is visited, then $x_v \in [\gamma_{a,\ell}^-, \gamma_{a,\ell}^+]$ and $\tau_v \ge \tau_a^{\min}$.
- If arc (v, v') labeled with m is visited, then $x_v + \tau_v + d_{\ell,\ell',m} = x_{v'}$.
- For each agent, the duration of activities and trips should cover the whole day T.

Budget Constraints. For each agent, the cost of activities and trips performed during the day should not exceed the daily budget B.

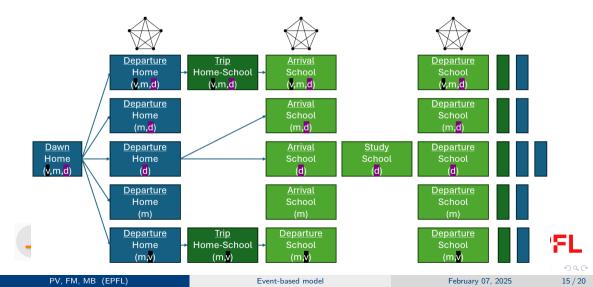
Example: a household with a private vehicle

Let's apply this model to an example, what we need to do:

- **1** define A_n for each agent $n \in N$; the set L_a , the capacity C_a , the collection of agents N_a for each activity $a \in A \rightarrow$ **VERTICES**
- **2** define $M_n^{k\ell}$ for each agent $n \in N$ and for every couple of locations $(k, \ell) \to \mathsf{EDGES}$
- **3** define the MILP \rightarrow solve the problem :)

A (10) < A (10) < A (10) </p>

Example: a household with a private vehicle



Outline

- Introduction
- Multi-agents Daily Scheduling Problem
- Event-based modeling
- Interest of the model and further steps

16 / 20

Interest of the model and further steps

Advantages:

- Compact formulation
- Allows to model a wide range of problems
- Can derive a path-based formulation \rightarrow efficiently solved by decomposition methods (e.g. column generation)

Further steps:

- Specify which problems are covered by this model.
- Compare its computation performance with the previous models.

Thank you for your attention!

PV, FM, MB (EPFL)

Event-based model

18 / 20

Bibliography I

Cortes Balcells, C., Torres, F., and Bierlaire, M. (2023).

Bridging epidemiology and mobility: Creating a policy-aware activity-based model for epidemiological studies.

In HEART 2024.

Gaul, D., Klamroth, K., and Stiglmayr, M. (2022).
 Event-based milp models for ridepooling applications.
 European Journal of Operational Research, 301(3):1048-1063.

Pougala, J., Hillel, T., and Bierlaire, M. (2022).
 Capturing trade-offs between daily scheduling choices.
 Journal of Choice Modelling, 43:100354.

19 / 20

Bibliography II

 Rezvany, N., Bierlaire, M., and Hillel, T. (2023).
 Simulating intra-household interactions for in- and out-of-home activity scheduling. *Transportation Research Part C: Emerging Technologies*, 157:104362.

(a) < (a) < (b) < (b)