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Predicting choice behavior
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Decision rule

Homo economicus
Rational and narrowly self-interested economic actor who is optimizing her
outcome

Behavioral assumptions

▶ The decision maker solves an optimization problem.

▶ The analyst needs to define
▶ the decision variables,
▶ the objective function,
▶ the constraints.
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Continuous case: classical microeconomics

Optimization problem

max
q

Ũ(q;θ)

subject to
pTq ⩽ I , q ⩾ 0.

Demand function
▶ Solution of the optimization problem.

▶ KKT optimality conditions:

q∗ = f (I , p; θ)
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Discrete choices

How does it work for discrete choices?
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Utility maximization
Optimization problem

max
q,w

Ũ(q,w ; θ)

subject to
pTq + cTw ⩽ I∑

j wj = 1
wj ∈ {0, 1},∀j .

where cT = (c1, . . . , cj , . . . , cJ) contains the cost of each alternative.

Derivation of demand functions
▶ Mixed integer optimization problem

▶ No optimality condition

▶ Impossible to derive demand functions directly
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Derivation of the demand functions

Step 1: condition on the choice of the discrete good

▶ Fix the discrete good(s), that is select a feasible w .

▶ Derive the conditional demand functions from KKT.

Step 2: enumerate all alternatives

▶ Enumerate all alternatives.

▶ Compute the conditional indirect utility function Ui .

▶ Select the alternative with the highest Ui .
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Enumerate all alternatives ??????

Starbucks has 383 billion unique latte
combinations, [Merritt, 2023]
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Activity-based models

▶ Activity participation

▶ Activity type

▶ Activity location

▶ Activity timing

▶ Activity duration

▶ Activity scheduling

▶ Activity frequency

▶ Travel mode choice

▶ Route choice

▶ Departure time choice

▶ Trip chaining / Tour formation

▶ Vehicle usage

▶ Parking choice

▶ Joint activity participation

▶ Ride-sharing / Carpooling decision

▶ Household resource allocation

▶ Teleworking decision

▶ Trip cancellation or rescheduling

▶ Use of on-demand mobility services

▶ ... and many more

10 / 46



Outline

Choice model as an optimization problem

Travel demand: activity based models

Combinatorial choices

Prediction

Estimation

11 / 46



Activities

Why do people travel?

▶ Most of the time, not for the sake of it.

▶ Activities.

▶ Spread in space and time.
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Activity-based models: literature

Econometric models
▶ Discrete choice models.

▶ Curse of dimensionality.

▶ Decomposition: sequence of choices
▶ Activity pattern
▶ Primary tour: time of day
▶ Primary tour: destination and

mode
▶ Secondary tour: time of day
▶ Secondary tour: destination and

mode
▶ e.g.

[Bowman and Ben-Akiva, 2001]

Rule-based models
▶ If the selected activity is at location

L,

▶ and the travel time from current
location C to L exceeds Tmax,

▶ then reject the activity–location
combination,

▶ unless it is a high-utility or
infrequent activity (e.g., doctor
appointment).

▶ e.g. [Arentze et al., 2000]
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Research question: can we combine the two?

Econometric Rule-based
Micro-economic theory X —
Parameters inference X —
Testing/validation X —
Joint decisions — X
Complex rules — X
Complex constraints — X
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Combinatorial choices

Mathematical optimization

▶ Each individual is solving a combinatorial optimization problem.

▶ Decisions: see the long list before...

▶ Objective function: utility (to be maximized).

▶ Constraints: complex rules.

[Pougala et al., 2022]
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Example: activity schedule

The context
▶ Given a list of potential activities,

▶ with preferred starting time and duration,

▶ identify a feasible schedule,

▶ that maximizes utility.
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Example: activity schedule

Decision variables
▶ Activity participation: ϕa ∈ {0, 1},

▶ Activity scheduling: ϕab ∈ {0, 1},

▶ Activity start time: sa ∈ R,
▶ Activity duration: τa ∈ R,

Schedule utility

US =

A∑
a=0

ϕa(U
participation
a + U start time

a + Uduration
a +

A∑
b=0

ϕabU
travel
a,b )

[Pougala et al., 2022]
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Example: utility schedule

Utility components

Uduration
a = θshort

a max(0, τ∗a − τa) + θlong
a max(0, τa − τ∗a) + ξduration

U starting
a = θearly

a max(0, s∗a − sa) + θlate
a max(0, sa − s∗a ) + ξstarting

[Pougala et al., 2022]
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Example: utility schedule

Constraints

T = 24h,∑
a

ϕaτa = T ,

xb ⩾ xa + τa + dab − T (1− ϕab) ∀a, b,
xb ⩽ xa + τa + dab + T (1− ϕab) ∀a, b,

and many others...

[Pougala et al., 2022]
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Combinatorial choice model

Decision variables

ϕ ∈ {0, 1}K

Total: 2K combinations.

Choice set: defined by constraints

Cn = {ϕ | gn(ϕ) ⩽ 0, hn(ϕ) = 0}.
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Combinatorial choice model

Utility

Uϕ,n = Vn(ϕ, xn, ξn; θ) + νϕ,n,

where

▶ νϕ,n are i.i.d. extreme value,

▶ ξn is a random vector, capturing
▶ correlation among alternatives,
▶ taste heterogeneity,
▶ etc.

▶ θ is a vector of unknown parameters, to be estimated from data.
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Combinatorial choice model

Mixture of logit models

Pn(ϕ|xn, ξn; θ) =
eUϕ,n∑
ℓ∈Cn

eUℓ,n
,

Pn(ϕ|xn; θ) =

∫
ξ

Pn(ϕ|xn, ξn; θ)dξ.

Main challenge

▶ Enumeration of Cn is impossible.

▶ Calculating the probability is impossible.
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Challenges

Your mission, should you choose to
accept it

❏ Use the model for prediction.

❏ Estimate its parameters from data.
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Use the model

Idea
▶ We cannot calculate the probability.

▶ But we do not really need it, do we?

▶ In order to identify the chosen alternative, we rely on simulation.

▶ Actually, simulation would be necessary anyway for the integral.

Methodology

▶ Draw independent realizations ξnr of ξn.

▶ Draw the chosen alternative from the logit model

π(ϕ) = Pn(ϕ|xn, ξnr ; θ).

▶ Metropolis-Hastings uses only the numerator eUϕ,n .
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Metropolis–Hastings: general idea

Goal
▶ We want to generate draws from a complicated target distribution π(·).
▶ Direct sampling is impossible.

▶ Metropolis–Hastings constructs a Markov chain whose stationary
distribution is π(·).

▶ Markov chain Monte-Carlo method.

Algorithm ingredients

▶ Target distribution: π(ϕ) ∝ eUϕ,n .

▶ Proposal distribution: q(ϕ ′|ϕ), easy to sample from.
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Metropolis–Hastings: Steps
Iteration t → t + 1
▶ Current state: ϕ(t).

▶ Step 1. Draw a candidate ϕ ′ from q(·|ϕ(t)).

▶ Step 2. Compute the acceptance probability

α = min

(
1,

π(ϕ ′) q(ϕ(t)|ϕ ′)

π(ϕ(t)) q(ϕ ′|ϕ(t))

)
= min

(
1,

eUϕ ′,n q(ϕ(t)|ϕ ′)

e
U
ϕ(t),n q(ϕ ′|ϕ(t))

)
.

▶ Step 3. With probability α, accept and set ϕ(t+1) = ϕ ′. Otherwise, reject
and keep ϕ(t+1) = ϕ(t).

Key property

▶ The chain has stationary distribution π(·).
▶ Here, π(ϕ) ∝ eUϕ,n , so only the numerator of the logit formula is needed. 28 / 46



Metropolis–Hastings: Illustration

Current state
ϕ(t)

Propose candidate
ϕ ′ ∼ q(ϕ ′|ϕ(t))

Accept if α > u

Accept: set ϕ(t+1) = ϕ ′

Reject: ϕ(t+1) = ϕ(t)

prob. α

prob. 1− α

Acceptance probability: α = min

(
1,

eUϕ ′,n q(ϕ(t)|ϕ ′)

e
U
ϕ(t),n q(ϕ ′|ϕ(t))

)
.
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Metropolis–Hastings

Is it magic?

▶ Key to success: well-designed proposal distribution q(·).
▶ Smart exploration of the choice set.

▶ Must exploit its structure to generate high probability alternatives.

Optimization-based choice problem

▶ By design, an optimization approach generates “good” alternatives.

▶ Main challenge: ergodicity.

▶ It means that the Markov chain must potentially cover the whole choice set.

[Flötteröd and Bierlaire, 2013], [Pougala et al., 2023]
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Challenges

Your mission, should you choose to
accept it

✓ Use the model for prediction.

❏ Estimate its parameters from data.
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Parameters inference

Research question

▶ Given the values of the parameters, we can simulate the chosen alternative.

▶ What about the opposite?

▶ Given observed choices, we want to infer the value of the parameters θ.
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Sampling of alternatives

[McFadden, 1978]

▶ Assign to each observation n a subset Dn of alternatives.

▶ πn(D |i) the probability to generate subset D, when i is observed.

▶ Contribution to the likelihood of observation n:

πn(i |D) =
πn(D |i)Pn(i)∑
j∈D πn(D |j)Pn(j)

[Bayes]

▶ For logit

πn(i |D) =
eVin+lnπn(D|i)∑
j∈D eVjn+lnπn(D|j)

.

▶ No more sum over Cn.

▶ It works also for Bayesian estimation [Dekker et al., 2025].
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Proposed sampling protocol

Sample only one more alternative

▶ ϕn is the chosen alternative for observation n.

▶ θcand is a candidate for the parameters.

▶ Use simulation to generate a “chosen” alternative φn, conditional on θcand.

▶ Define
Dn = {ϕn,φn}.

Comments
▶ If φn = ϕn, Dn contains only one alternative, extremely rare when Cn is

huge,

▶ Intuition: a single good competitor is sufficient to identify the trade-offs.

▶ Contribution to the likelihood of each observation: binary logit model.
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Bayesian estimation

Traditional Bayesian estimation
Use MH to draw from the posterior = likelihood × prior (up to normalization):

p(θ | data) ∝ p(data | θ) p(θ)

Proposed Bayesian estimation
Use Gibbs sampling to draw from p(θ,D | data):

1. Apply sampling protocol to draw from p(D | θ, data).

2. Use MH to draw from

p(θ | D, data) ∝ p(data | D, θ) p(θ).
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Bayesian estimation
Data set

Y

Gibbs Sampling

Step 1: Sampling protocol
D | θ,Y

Step 2: Sample parameters with MH
θ | D,Y

Output
Parameter θ
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Case study

Restaurant choice model
▶ Synthetic dataset similar to [Bierlaire and Paschalidis, 2023] and

[Bierlaire and Krueger, 2024]

▶ Full choice set C: J = 100 restaurants

▶ N = 104 individuals

▶ Observed choices generated synthetically with a logit model

Vjn = θcost pricej + θrate ratingj + θlog d log(distjn) +
∑

c∈Ccuisine

θc 1{j is cuisine c}
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Comparison of Estimation Methods

MLE (Biogeme) Bayesian Inference (PyMC)
Method Maximum Likelihood Estimation Gibbs Sampling + MH
Solver BFGS (with simple bounds) Metropolis–Hastings
Convergence 86 iterations 12000 draws
Solver time 5 min 12 s 73 s
Full run time 7 min 18 s 2 min 38 s

MLE estimates parameters using the full choice set, while the Bayesian sampler compares only
the chosen alternative with one sampled competitor (binary logit submodel).
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Comparison between MLE and BI
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Bayesian inference gives similar results looking only at 2 alternatives at a time.
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Summary

▶ Large scale choice models.

▶ Numerical solution of the utility maximization problem.

▶ Impossibility to enumerate alternatives in the choice set.

▶ Main idea: rely on Markov chain Monte-Carlo methods, both for prediction
and estimation.

▶ First results are particularly encouraging.
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Challenges

Your mission, should you choose to
accept it

✓ Use the model for prediction.

✓ Estimate its parameters from data.

This presentation will self-destruct in 5 seconds.
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