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Predicting choice behavior
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Decision rule

Homo economicus
Rational and narrowly self-interested economic actor who is optimizing her
outcome

Behavioral assumptions

▶ The decision maker solves an optimization problem.

▶ The analyst needs to define
▶ the decision variables,
▶ the objective function,
▶ the constraints.
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Continuous case: classical microeconomics

Optimization problem

max
q

Ũ(q;θ)

subject to
pTq ⩽ I , q ⩾ 0.

Demand function
▶ Solution of the optimization problem.

▶ KKT optimality conditions:

q∗ = f (I , p; θ)
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Discrete choices

How does it work for discrete choices?
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Utility maximization
Optimization problem

max
q,w

Ũ(q,w ; θ)

subject to
pTq + cTw ⩽ I∑

j wj = 1
wj ∈ {0, 1},∀j .

where cT = (c1, . . . , ci , . . . , cJ) contains the cost of each alternative.

Derivation of the demand functions
▶ Mixed integer optimization problem

▶ No optimality condition

▶ Impossible to derive demand functions directly
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Derivation of the demand functions

Step 1: condition on the choice of the discrete good

▶ Fix the discrete good(s), that is select a feasible w .

▶ Derive the conditional demand functions from KKT.

Step 2: enumerate all alternatives

▶ Enumerate all alternatives.

▶ Compute the conditional indirect utility function Ui .

▶ Select the alternative with the highest Ui .
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Enumerate all alternatives ??????

Starbucks has 383 billion unique latte
combinations. [Merritt, 2023]
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Activity-based models

▶ Activity participation

▶ Activity type

▶ Activity location

▶ Activity timing

▶ Activity duration

▶ Activity scheduling

▶ Activity frequency

▶ Travel mode choice

▶ Route choice

▶ Departure time choice

▶ Trip chaining / Tour formation

▶ Vehicle usage

▶ Parking choice

▶ Joint activity participation

▶ Ride-sharing / Carpooling decision

▶ Household resource allocation

▶ Teleworking decision

▶ Trip cancellation or rescheduling

▶ Use of on-demand mobility services

▶ ... and many more
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Travel demand models
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Activities

Why do people travel?

▶ Most of the time, not for the sake of it.

▶ Activities.

▶ Spread in space and time.
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Activity-based models: literature

Econometric models
▶ Discrete choice models.

▶ Curse of dimensionality.

▶ Decomposition: sequence of choices
▶ Activity pattern
▶ Primary tour: time of day
▶ Primary tour: destination and

mode
▶ Secondary tour: time of day
▶ Secondary tour: destination and

mode
▶ e.g.

[Bowman and Ben-Akiva, 2001]

Rule-based models
▶ If the selected activity is at location

L,

▶ and the travel time from current
location C to L exceeds Tmax,

▶ then reject the activity–location
combination,

▶ unless it is a high-utility or
infrequent activity (e.g., doctor
appointment).

▶ e.g. [Arentze et al., 2000]
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Research question: can we combine the two?

Econometric Rule-based
Micro-economic theory X —
Parameter inference X —
Testing/validation X —
Joint decisions — X
Complex rules — X
Complex constraints — X
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Combinatorial choices
Mathematical optimization

▶ Each individual is solving a combinatorial optimization problem.

▶ Decisions: see the long list before...

▶ Objective function: utility (to be maximized).

▶ Constraints: complex rules.

[Pougala et al., 2023]

Challenges

▶ Stochasticity: random utility → rely on simulation.

▶ Large number of variables and constraints → decomposition methods.

▶ Interacting individuals (households, social groups) → this talk.

▶ Time horizon → future work.
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Social groups

We consider a social group N of agents that cooperate and desire to maximize
their aggregated utility.

▶ Coordination, joint activities.

▶ Group decision making

▶ Service to the group, maintenance.

▶ Resource constraints.

▶ Escorting.
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Objective function: utility of the group

▶ Function of the utility of each member. But
which function?

▶ Lack of consensus in the literature.

▶ Additive: the (weighted) sum of the utility
of each member.

▶ Autocratic: the utility of the “strongest”
member.

▶ Egalitarian: the utility of the “weakest”
member.

▶ Important for our framework: must be easy
to linearize.
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Constraints

Coordinated activities
▶ a is an activity that must be performed by

all members of the group.

▶ Dining out.

▶ Family gathering.

▶ Sport events.
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Constraints

Distributed activities
▶ a is an activity that must be performed for

the group.

▶ Maintenance.

▶ Grocery shopping.

▶ Meal preparation.

▶ Accounting of the sport club.
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Constraints

Resource constraints
▶ One car per household.

▶ One meeting room in a shared office space.

▶ Modeling approach: treat the resource as
an individual.

▶ “The car is a member of the family”.

▶ It is associated with “activities” and a
schedule.

▶ We can then introduce “coordinated
activities” constraints.
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Constraints

Escorting a child to school

▶ Specific instance of a resource constraint.

▶ The person escorting becomes a resource.

▶ As individuals and resources are modeled in
the same way, coordinated activities
constraints can be applied.
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Space

Discrete and finite set L of locations.

For each (ℓ, ℓ ′):

▶ Mℓℓ ′
n : available modes for agent n.

▶ ρℓℓ ′m: travel cost of the trip with mode m.

▶ dℓℓ ′m: travel time of the trip with mode m.

Assumption: travel time and cost are exogenous.
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Activities: notations

Set An of potential activities for each agent n.

For each activity a:

▶ La: set of possible locations for a

▶ caℓ: cost of a at location ℓ

▶ [γ−
aℓ,γ

+
aℓ]: opening hours for a at location ℓ

▶ τmin
a & τmax

a : min & max duration of a.

▶ Ca: maximum capacity for a.

▶ Na: set of required agents for a.

25 / 54



Activities: further assumptions

▶ Start and end at home: The first activity (dawn) and the last activity
(dusk) always take place at the agent’s home.

▶ Group of activities:
▶ Some activity groups (e.g., shopping) must be performed at least a specified

number of times over the planning horizon.
▶ Examples: shopping, domestic tasks, sport, etc.
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Scheduling
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Utility function

Collective decisions ⇒ maximize the utility of the group

U =
∑
n∈N

Un =
∑
n∈N

(∑
a∈An

Un
a + ξan +

∑
ℓ,ℓ ′∈L

∑
m∈M

Un
ℓℓ ′m + ξℓℓ ′mn

)
▶ Un

a : reward + joint activity reward - deviation from the prefered schedule -
cost

▶ Un
ℓℓ ′m: joint travel utility (travel cost, travel time, etc.), usually negative.

▶ ξan and ξℓℓ ′mn: random term with a known distribution
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Utility function

Error terms
▶ Rely on simulation.

▶ Draw ξanr and ξℓℓ ′mn, r = 1, . . . ,R .

▶ Optimization problem for each r .

▶ Utility: Uanr .
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Graph-based modeling approach
▶ Formulation as a shortest path problem in a graph G = (V ,E ) with

additional constraints.

▶ Vertices V : triplet v = (activity av , location ℓv , subgroup of agents Sv )
→ also encoding Ca and Na

▶ Arcs E : transition of agents between activities
→ labeled with the transport mode
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Graph-based modeling approach

▶ One dawn(n)-dusk(n) path in G ⇔ One sequence of activities/trips
for an agent n

▶ Problem reformulation: find one path per agent under time-consistency,
combinatorial and budget constraints.
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Variables

▶ Graph variables
▶ zne ∈ {0, 1} — equals 1 if agent n travels along arc e
▶ wv ∈ {0, 1} — equals 1 if vertex v is part of the path for all agents in Sv

▶ Time variables for each vertex v
▶ xv ∈ R+ — starting time of activity av
▶ τv ∈ R+ — duration of activity av

These apply to all agents in Sv at location ℓv .
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Constraints
1. flow constraints

▶ path definition

2. combinatorial constraints
▶ eligibility to pass through a vertex
▶ group consistency
▶ location uniqueness
▶ group of activities

3. time-consistency constraints
▶ schedule consistency
▶ full time period covered
▶ opening hours
▶ duration bounds

4. a budget constraint
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Constraints

▶ flow conservation constraints: dawn(n)-dusk(n) path definition∑
e∈δ+(v)

zne =
∑

e∈δ−(v)

zne ∀v ∈ V ∀n ∈ N

∑
e∈δ+(dawn(n))

zne = 1 ∀n ∈ N

∑
e∈δ−(dusk(n))

zne = 1 ∀n ∈ N
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Constraints
▶ combinatorial constraints

▶ Group consistency

wv =
∑

e∈δ+(v)

zne ∀v ∈ V ∀n ∈ Sv

▶ Eligibility

zne = 0 ∀e = (u, v) ∈ E ∀n /∈ Nu ∩ Nv

▶ Group of activities ∑
v∈V : av∈Gk

wv ⩾ nk ∀k ∈ K

▶ Location uniqueness

wv + wv ′ ⩽ 1 ∀v , v ′ ∈ V s.t. av = av ′ , Sv = Sv ′ , ℓv ̸= ℓv ′

36 / 54



Constraints

▶ time-consistency constraints

xv ⩾ xu + τu + duv − T (1− zne ) ∀e = (u, v) ∈ E ∀n ∈ N

xv ⩽ xu + τu + duv + T (1− zne ) ∀e = (u, v) ∈ E ∀n ∈ N

γ−
av ,ℓv

wv ⩽ xv ⩽ γ+
av ,ℓv

+ T (1− wv) ∀v ∈ V

τmin
av

wv ⩽ τv ⩽ T (1− wv) ∀v ∈ V∑
v∈V : n∈Sv

τv +
∑
e∈E

dez
n
e = T ∀n ∈ N
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Additional constraints

▶ a budget constraint∑
v∈V : n∈Sv

cavℓvwv +
∑
e∈E

ρez
n
e ⩽ B ∀n ∈ N
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Car as a resource
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To Tennis or Not to Tennis

Figure: Example of ride sharing modeling

Example

▶ Alice (A) and Bob (B): two
colleagues

▶ Alice has a car.

▶ Bob has another activity:
tennis.
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Full graph
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Hypotheses

▶ Alice and Bob derive a social reward by
working together.

▶ Alice prefers to work in the afternoon.

▶ Bob can only play tennis between 4pm and
7pm.

▶ The trip from the office to the tennis takes
much more time with public transport than
with the car.
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Different scenarios
▶ If Alice and Bob work together, without the car, Bob can’t go to tennis.

▶ If he arrives at work early, he can go to tennis, but he doesn’t work with
Alice.

▶ If Alice and Bob work together and Alice comes by car, B can go to tennis
by car with Alice.

44 / 54



Simulation: From isolated individuals. . .

Alice Bob
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Simulation: ...to social groups

Alice Bob
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Speed-up

Comparison with [Rezvany et al., 2024]

Instance Rezvany Graph-based # Agents # Activities (Joint)
Test1 182s 28s 2 14 (6)
Test2 6s 6s 3 13 (0)
Test3 – – 4 37 (14)
Test4 579s 28% max time 3 20 (9)
Test5 41s 15s 1 18 (none)
Test6 95% max time 13% max time 2 28 (10)
Test7 3s 3s 1 11 (none)
Test8 5s 2s 2 13 (2)

Computational time to the optimum (limit: 600sec)
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Conclusions

It works!
▶ Handles complex activity and schedule choices.

▶ Integrates behavioral and operational constraints.

▶ Enables realistic, data-driven simulations.

What’s next?
▶ Flexibility is the key strength of the framework.

▶ Scalability remains a major challenge (time, activities).

▶ Simulation cost is high — need for efficient algorithms.

▶ Connections with vehicle routing problems suggest decomposition
strategies.

▶ Inference could benefit from Bayesian approaches.
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Summary

▶ Goal: develop operational combinatorial choice models, such as
activity-based models.

▶ Approach: integrate econometric modeling with rule-based logic.

▶ Methodology: leverage operations research, mathematical optimization
and simulation.

▶ Simulation of activity schedule: [Pougala et al., 2022a].

▶ Application with the Swiss Railways: [Manser et al., 2021].

▶ Estimation of the parameters: [Pougala et al., 2022b].

▶ Household interactions: [Rezvany et al., 2023], [Rezvany et al., 2024].

▶ Main advantage of the framework: flexibility.
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Combinatorial choices

Main philosophy
Leverage the power of modern combinatorial optimization to model complex
choice behavior.
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